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EXECUTIVE SUMMARY

The principal objective of this research effort was to demonstrate the

extraordinary cost effective acceleration of finite element structural analysis problems

using a transputer-based parallel processing network. This objective has been

accomplished in the form of a commercially viable parallel processing workstation.

The workstation is a desktop size, low-maintenance computing unit capable of

supercomputer performance yet costs two orders of magnitude less.

To achieve the principal research objective, a transputer based structural

analysis workstation termed XPFEM was implemented with linear static structural

analysis capabilities resembling commercially available NASTRAN. Finite element

model files, generated using the on-line preprocessing module or external

preprocessing packages, are downloaded to a network of 32 transputers for

accelerated solution. The system currently executes at about one third Cray X-MP24

speed but additional acceleration appears likely. For the NASA selected

demonstration problem of a Space Shuttle main engine turbine blade model with

about 1500 nodes and 4500 independent degrees of freedom, the Cray X-MP24

required 23.9 seconds to obtain a solution while the transputer network, operated from

an IBM PC-AT compatible host computer, required 71.7 seconds. Consequently, the

$80,000 transputer network demonstrated a cost-performance ratio about 60 times

better than the $15,000,000 Cray X-MP24 system.

A number of significant developments were required to achieve the

demonstration objective. These developments included:

Parallel Hardware System

A network of thirty-two densely interconnected transputers, a large screen color

graphics system and a network mass storage system were designed, separately

implemented and integrated into an inexpensive host computer. The complete system

fits on a desktop, yet delivers the computational power of a supercomputer.



Parallel Sparse Finite Element Solver

A parallel, sparse implementation of the Jacobi-conditioned Conjugate Gradient

(JCG) algorithm was implemented for solution of the finite element equations on the

transputer network. The memory-efficient algorithm enables problems with over

20,000 degrees of freedom to be solved in the 32 Mbytes of distributed core memory.

In addition, an out-of-core solver has also been defined for larger problems which

cannot reside in the collective core memory of the transputer network.

Adaptive Analysis

Adaptive analysis is an automated mesh refinement procedure for reducing

finite element mesh discretization errors to a given tolerance. It consists of a series of

solutions to the finite element problem, each with successively more refined meshes in

regions of large error. The adaptive analysis capability implemented as part of this

research effort has been demonstrated to converge efficiently on two-dimensional

models. A three-dimensional capability would involve a similar implementation path.

A suitable 3D mesh generator is in development and a 3D error criterion for driving the

solution convergence is available. The three-dimensional capability was not defined

as a part of this research as no new insight was apparent that would justify its

significant implementation time.

Pre/Post Processing

Graphic visualization of the finite element model, boundary conditions and

applied loads, and the resulting deformed model and stresses are invaluable to

engineering analysis. A graphics presentation capability has been implemented for

this purpose. The graphics system permits visual, interactive creation and

manipulation of models during preprocessing, shows the discretization of the model

into elements during mesh generation, and displays the deformed model, stress

contours, and principal stresses during post processing. Three-dimensional structures

can be analyzed but model development and 3D stress contouring must be performed

with third party software.
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Validation

Accuracy of finite element software implemented on XPFEM was verified with

three tests:

3
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Element stiffness matrices computed by XPFEM were compared

to the matrices produced by COSMIC NASTRAN.

Result: stiffness terms match COSMIC NASTRAN to five

significant figures.

The displacement solution for a NASA-provided 3D turbine blade

problem, as computed by a Cray X-MP24 running COSMIC

NASTRAN, was compared term-by-term to the solution

produced by XPFEM.

Result: solutions are identical to five significant figures when the

tolerance on XPFEM's iterative solver is 1.0E-7 or lower.

. Rectangular models were deformed along one axis. The amount of

lateral contraction computed by XPFEM was compared to the value

predicted by linear elastic theory and to the value produced by COSMIC

NASTRAN.

Result: Lateral contraction agreeing with Poisson's ratio was

computed by both XPFEM and COSMIC NASTRAN.

These tests do not rigorously prove the accuracy of XPFEM solutions, but do give

sufficient confidence that the basic element generation, stiffness matrix assembly and

solution algorithms function properly.



I. INTRODUCTION

The Phase I feasibility study of a transputer based finite element solver

concluded that a network of transputers, coupled with efficient parallel finite element

code, could result in an engineering analysis tool of tremendous power [1]. The

objective of this Phase II research effort was to design, develop, and implement a

transputer-based finite element workstation with the extraordinary performance

predicted by the Phase I study. This objective was achieved.

The performance of local-memory distributed processors depends to a large

extent on how efficiently the processors can communicate. For this reason, the first

task in the development of the finite element workstation involved designing a network

that would allow the processors to communicate optimally. The other pieces of the

workstation, namely the host interface, high-resolution graphics and fast external

storage, were then integrated into the network to form a complete hardware system.

The hardware in XPFEM and its arrangement is described in Section II, System

Design. This section also explains the transputer communication scheme and how it

evolved.

4

Much research on parallel finite element solvers has been done in recent years

[2-5]. This research provided significant insight and guidance to the design of XPFEM;

however, many of the proposed parallel solvers had limitations that precludes their

use in a viable engineering workstation. The goal for XPFEM was to create a parallel

solver that was fast, efficient and could solve large finite element problems. Several

new methods had to be developed to achieve this goal. Section III, Distributed Finite

Element Method, consists of two parts: The Sparse Solver and The Out-of-Core

Solver. The Sparse Solver describes algorithms developed for and implemented in

XPFEM which subdivide a finite element problem, assemble the stiffness matrix in

parallel without communication, and solve the resulting finite element equations in-

core using a conjugate gradient solver. The Out-of-Core Solver discusses a concept

for implementing an out-of-core capability into XPFEM.

A finite element solver is of limited value to a structural analyst unless he or she

has a convenient means of entering and modifying problems, and interpreting the

results. Section IV, Pre/Post Processing, describes the mesh generator, NASTRAN



interface and post processor modules which provide input, output and interpretation

capabilities.
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Section V describes the integrated XPFEM workstation. It contains screens

from a sample work session including model creation, mesh generation, and post-

processing.

Many new ideas occurred to the researchers during the development of

XPFEM. They include such diverse subjects as faster and more efficient parallel

solvers, better storage schemes, methods of implementing advanced structural

analysis features, and parallel pre- and post-processing. Although beyond the scope

of this research effort, these ideas would be invaluable in a commercial structural

analysis workstation. They are discussed in Section 6, Conclusions and

Recommendations.

The eight appendices give detailed information on the topics presented in the

report. They contain User's Manuals for the XPFEM workstation and the XPDOS

transputer disk operating system, a description of the Jacobi-conditioned conjugate

gradient solver, limitations of the solver, descriptions and interfaces of XPDOS and

XPGRAPHICS, the graphics library for XPFEM, a report of a parallel mesh generation

method, and limitations of the NASTRAN interface.



II. SYSTEM DESIGN

Designers of parallel programs must thoroughly consider all aspects of system

hardware, configuration and communication details as preliminaries to developing

efficient parallel software. Significant effort was devoted to each of these preliminaries

during this research project.

Hardware

Figure 1 shows the hardware components of the delivered prototype transputer

based workstation. The original design concept proposed a system of forty transputers

but due to innovations in the network topology, a system of thirty-two T800-20

transputers configured in two tetrahedra was determined to be more cost-effective.

Each transputer has four 20 Mbit/second bi-directional links, operates at 20 MHz, is

rated at 1.5 Mflops, and has 1 Mbyte of RAM. The thirty-two transputers were mounted

on eight PC-XT/AT sized plug-in cards with four transputers per card.

High resolution graphics capabilities were also incorporated into the

workstation. These graphics capabilities were developed using INMOS B408 and

B409 transputer modules as a graphics unit. The B408 module functions as a drawing

and image storage unit. It contains a T800 transputer and 2.25 MBytes RAM and is

linked to the B409 module via a pixel bus. The B409 module functions as a display

and synchronization driver. The combined B408/B409 modules are capable of

resolutions of 512 x 512 with five pages of memory, 768 x 768 with two pages of

memory or 1024 x 768 with one page of memory.

Mass storage was made available to the transputer network via a pair of SCSI

disk drives. This capability was necessary to implement effective out-of-core solution

techniques. The SCSI drives were designed by a third party OEM exclusively for this

project. They are 100 MByte Winchester Conner hard disks mounted on one PC-AT

plug-in card. The disks are controlled by T222 transputers and interface to the network

through transputer links. Transfer times are in the range of 0.25 MBytes/sec. A

SPARTA-developed transputer disk operating system permits directory, file, and

read/write operations to be performed with convenient routines (Appendices D and E).



Configuration

Three different configurations--pipeline, doubly re-entrant grid, and linked

tetrahedra--were considered as viable candidates for the workstation network. The

pipeline was of interest because of the simplicity in its communication scheme. The

merits and potential of the doubly re-entrant grid were determined during the Phase I

feasibility study [1]. The tetrahedral connection scheme, first suggested by Rodgers

[6], evolved as a viable configuration for iterative solution methods. Results from

matrix-vector multiplication benchmarks indicated that the linked tetrahedra concept

provided potential expandability, communication flexibility, optimized link usage, and

resulted in the shortest average communication path for global scalar summations and

vector exchanges, the dominant communication operations in conjugate gradient-

based iterative solution methods. Because of these results, the tetrahedral scheme

was chosen as the workstation network topology.

A schematic of the tetrahedral configuration is shown in Figure 2. In this

configuration transputers are linked into clusters of four. Each transputer is attached to

the remaining three transputers in a cluster using three of its integrated links. The

remaining free link on each transputer is used to join clusters into tetrahedra with four

clusters constructing one tetrahedron. At each vertex of a tetrahedron one transputer

exists with a free link. These free links permit multiple tetrahedra to be networked,

thus providing network expandability. As indicated by Figure 2, the workstation

network consists of two interconnected sixteen-processor tetrahedra.

Results from matrix-vector multiplications performed on the tetrahedral network

are displayed in Figure 3. These results show that the network is capable of

sustaining 35.5 MFIops during matrix-vector multiplication.

Communication

Conjugate gradient-based iterative techniques for solving linear systems are

dominated by matrix operations such as matrix-vector multiplies and dot products.

Due to global scalar summations and global vector exchanges, local-memory process-

ing networks require significant communications to perform matrix operations. These

communication requirements impose a system overhead that must be minimized to

achieve maximum speed-up. The communication scheme developed for the

"7



transputer based workstation was coordinated with the system configuration and
appears to provide extremely efficient global summations while maintaining flexibility

for improvements and expandability.

The communication scheme as implemented on the two tetrahedra network is

outlined in Figure 2. This design, which requires five communication exchanges for

global scalar summation, was the result of two revisions to earlier methods which used

dynamic switching. Dynamic switching involves the use of specialized link hardware

to change the link connections while the processors are running. It was thought to

have advantages over a static network because messages between widely separated

processors could be routed in a single step by directly joining the two remote

processors whenever they needed to communicate.

The dynamic communication scheme consisted of three static exchanges

among transputer clusters on the same tetrahedron and one dynamic exchange

between corresponding transputers on different tetrahedra. A series of INMOS C004

link switches were used to dynamically alter the link connections at the vertices of the

tetrahedra. The dynamic scheme was implemented but resulted in slow matrix-vector

multiplication due to the delays needed to prepare each reconfigure. These results,

and predictions from INMOS representatives that future transputers would be able to

route messages in static configurations much faster than current transputers [7], led to

a revision of the communications code so that only static exchanges took place.

The first revision needed seven communications steps to find global sums. It

used the unmodified configuration with only one link between adjacent tetrahedra.

This communication plan was implemented and used to achieve an early prototype

distributed JCG solver on the two tetrahedra network; however, the seven

communication exchanges at each iteration of the solution process resulted in an

average computation-to-communication ratio of 1:2.

The final five-step communication scheme was a hybrid of the dynamic

switching and seven-step schemes. Like the dynamic switching scheme, it fully

utilizes all links in the network, including all four links of the vertex transputers of the

tetrahedra. Like the seven-step scheme, all links are statically configured. Using the

five-step scheme and the JCG algorithm, the average computation-to-communication

ratio increased to 2:1.



II

The five step global communication scheme works equally well for vectors as

well as scalars. However, it was observed during the development of the solver that

global vector communication is superfluous if the finite element model bandwidth does

not extend across the full matrix. Since banded matrices are the norm in finite

elements, local rather than global vector exchange methods were investigated. An

interesting result surfaced: pipeline communication between nearest neighbors is

much faster than a global vector exchange. The number of communication steps for

vector exchanges now becomes a function of the bandwidth and differs from problem

to problem--tightly banded models will need fewer vector communication steps than

poorly banded models. For reasonably banded problems, local vector exchanges on

a pipeline increased the average computation-to-communication ratio to 8:1. A

fortunate consequence of the tetrahedral topology is that it contains a pipeline within it,

so no hardware modifications were necessary to gain the benefits of local pipeline

communication.

9

Two primary conclusions were reached during the communications research.

Firstly, as mentioned above, the experiences at SPARTA suggest that static, rather

than dynamic, configurations result in a more efficient communication design.

Secondly, local pipeline communications are more effective than tetrahedral

communications when exchanging vectors to adjacent or nearly adjacent transputers.
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Component Description Quantity

INMOS IMS B403-3 T800 Transputer 32
(20 Mhz - 1Mbyte - 3 cycle DRAM)

INMOS INS B008 Motherboard 1 0

INMOS IMS B405-3A T800 Transputer 1
with 8 Mbyte DIT module

CSA SCSI Winchester Drive Control 2

100 Mbyte SCSI Winchester Disk 2

INMOS IMS B403-3 T800 Graphics Tram 1

INMOS IMS B409 Graphics Controller 1

NEC Multisync II Color Monitor 1

Expansion Chassis 2

FIGURE 1

DELIVERABLE HARDWARE
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III. DISTRIBUTED FINITE ELEMENT METHOD
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Finite element analysis consists of four distinct tasks:

•

.

3.

4.

Pre-processing (problem definition, geometric modeling,

and mesh generation),

Generation of finite element equations,

Solution of the system of finite element equations,

Post-processing (calculation of stresses, stress contours,

strain energy density, et cetera)•

Each of these tasks has varying degrees of inherent parallelism available for

exploitation on a distributed network•

The core of the finite element method consists of the computation, assembly

and solution of the system of finite element equations. The computation of the finite

element equations can be done either an element at a time by computing and

assembling element stiffness matrices, or a node at a time by computing and

assembling stiffness terms corresponding to individual nodes. The nodal approach

enables the stiffness terms to be computed and assembled entirely in parallel without

communication, and results in near linear speed-up (Speed-up is defined as the

computation time for one processor divided by the computation time for N processors.)

for any problem size if the workload is distributed evenly. For solution of the resulting

system of finite element equations, direct methods based on Gaussian elimination are

more general but iterative methods such as the conjugate gradient and Lanczos

methods are more adaptable to distributed networks and are applicable to a majority

of finite element problems due to the symmetric, positive definite characteristics of

finite element matrices.

A relevant issue to the solution of the resulting system of equations is the

distinction between in-core and out-of-core techniques. For moderate size (20,000

degree of freedom) problems, the available network core memory of 32 Mbytes is

enough to store the entire model. However, as problems increase in size, only a

fraction of the model can reside in-core; therefore, techniques for employing out-of-

core memory during the solution process become necessary. In the remainder of this

section, the development and implementation of an in-core sparse solution technique
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and the des _ of an out-of-core substructuring technique on the tetrahedral network

are described.

THE SPARSE SOLVER
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This section describes parallel algorithms which were designed to solve

moderate size finite element problems in-core efficiently and with minimal storage.

The algorithms are necessarily more complex than conventional, sequential finite

element (FE) algorithms, but the increase in performance more than justifies the

additional complexity: a single transputer with 8 Mbytes of memory can solve

problems with over 10,000 degrees of freedom, and a network of 32 transputers with 1

Mbyte each can solve problems with over 38,000 degrees of freedom. The collection

of algorithms which analyze, assemble and solve the FE problem in-core is referred to

as the sparse solver. The following sections describe the profiler, the assembler and

the solver, which comprise the main parts of the sparse solver. These sections will

refer to Figures 4-6 which illustrate a sample model and show the form of the model's

global stiffness matrix (GSM).

Node Rows versus Degree-of-Freedom Rows

All mention of rows and columns of the GSM, both in this section and in the

occam code, refer to nodes, not to the actual degrees of freedom. For example, for a

3D FE model with 12 nodes, there will be 36 degrees of freedom organized in

consecutive sets of x, y and z displacement terms for each node. The notation used

here, however, will consider the GSM as having 12 rows, not 36. Each "row" actually

consists of x, y and z displacement vectors, so one row contains 3 different arrays. For

a three-dimensional problem, the intersection of a row and a column consists of a

submatrix with nine terms (x, y and z from the row times x, y and z from the column)

referred to as a "patch." The size of a patch differs with the dimensionality of the FE

model: two-dimensional patches have four terms (the square of the problem

dimension) and three dimensional patches have nine terms. This view of the GSM

simplifies many factors related to maintaining information on sparsity. An incidental

benefit is that short integers can be used as indices for problems with up to 65,534

degrees of freedom in two-dimensional problems, and up to 98,301 degrees of

freedom in three-dimensional problems. If degrees of freedom were indexed directly

(rather than indirectly through nodes), short integers could handle problems with only



32,767 degrees of freedom. Due to the heavy reliance on indexing tables, short

integers liberate significant amounts of memory that would otherwise be occupied by

the more conventional 32 bit integers.
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The Profiler

In order to write a sparse solver, general characteristics of the GSM such as the

extent of sparsity, the patterns of non-zeros, variations in bandwidth, and the effect of

node and element numbering on sparsity must be identified. To assist in determining

characteristics of FE models, a program was written to search through model

connectivity information to determine where non-zeros will appear. In addition, since

renumbering codes create models numbered in an orderly fashion, this program,

called a profiler, was designed to recognize patterns that appear due to node

numbering. The profiler produces information about non-zeros in each row of the

GSM. (A non-zero refers to a non-zero patch, not a single term. A non-zero will occur

wherever one node shares the same element with another node. Figure 4 shows that

nodes 6 and 9 are both in element 6, so there will be a non-zero patch in row 6,

column 9 and row 9, column 6. Row 6 will contain zeros in columns 1, 2, 3, 4, 8 and 10

since node 6 does not share a common element with nodes 1, 2, 3, 4, 8 or 10.) The

profiler keeps track of the position of each non-zero and, if consecutive patches are

non-zero as well, it will group them together in a "segment" (Figure 4). There are two

segments in row 6: the first one starts in column 5 and is 3 patches long and the

second one is a singleton and is in column 9. The profiler revealed some interesting

properties of the NASA turbine blade model (1575 nodes, 1025 eight noded brick

elements). Although numbered well in most regions, the model has a bandwidth

spanning 90% of the matrix in certain regions. The turbine blade model node

numbering a_so results in many consecutive patches, indicating that storage of

segment information (i.e., the starting column number and the length) is sufficient to

index the entire GSM.

Profiling is performed in parallel. The host processor serving the network

evenly divides the nodes among the remote processors. Remote nodes compute

profiling information on their nodes and return the data to the host. From the profiling

data, the host processor determines how to subdivide the finite element problem so

that equation solving, the most time consuming step, is optimally load-balanced. The



problem is then redistributed to the network for assembly and solution of the finite

element equations.

Parallel Assembly of the Global Stiffness Matrix

Computation of the element matrices and their subsequent summation into the

GSM are computationally intensive scalar operations. Most of these operations,

however, are independent processes and are thus readily adaptable to parallel

processing. Element stiffness matrix computations, for example, are independent

tasks and can be performed in parallel with linear speed-up. Summation of the

element matrices into a GSM, however, is not inherently parallel because of the data

dependencies of GSM terms; a single term in the GSM typically receives contributions

from several elements. Rather than distributing elements to processors, a new

approach was taken: routines were devised to compute patches of the GSM directly,

rather than computing and assembling element matrices. In this manner, processors

can work independently without performing redundant calculations and without

communicating. The only penalty is in the slight redundancy of storage of element

data since some elements' parameters and node coordinates may be stored on more

than one processor.

Computation of the GSM by Patches -- Example

The computation of stiffness terms and their assembly into the global matrix will

be illustrated by an example. Consider the FE model and its related GSM in Figure 4.

Assume that there are four processors, and that processor 0 (P0) has rows 1 - 3,

processor 1 (P1) has rows 4 & 5, processor 2 (P2) has rows 6 - 8 and processor 3 (P3)

has rows 9 & 10. Each processor simultaneously begins to compute the first patch on

that processor, i.e., P0 computes the patch for node 1 on itself; P1 computes the patch

for node 4 against node 2; P2 computes the patch for node 5 against node 6; and P3

computes the patch for node 9 against node 4.

A patch of the GSM is computed in the following manner: First, data for all

elements which use the two nodes involved (one node representing the row, and the

other representing the column) is needed. P0 will need element 1 for data on node 1,

P1 will need element 2 for data on nodes 2 and 4, P2 will need element 6 for data on

nodes 5 and 6, and P3 will need elements 4 and 5 for data on nodes 4 and 9. Next, for
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each element involved, the local node corresponding to the global node must be

determined. With the local node numbers, special element stiffness routines are

invoked which return only those stiffness terms relating the two local nodes. For

example, P0 must determine which local node the global node 1 represents in

element 1. If global node 1 is element l's local node 3, for example, P0 would then

call the special element stiffness routine which will compute only the stiffness terms

related to local node 3 acting on itself. P3 would have to determine the local node

numbers for global nodes 4 and 9 in element 4 (and element 5). If global node 9 is

element 4's local node 1, and global node 4 is element 4's local node 2, processor P3

will call the element stiffness patch routine which computes only the stiffness terms

relating local nodes 1 and 2.

In this example, P3 is the only processor with more that one element affecting

the processor's first patch. After finding the stiffness terms from element 4, P3 repeats

the procedure for element 5 (determine which local nodes the global nodes 4 and 9

correspond to, then compute the stiffness terms only for those two local nodes acting

on each other) and sums the stiffness terms from elements 4 and 5 together into one

patch.

Processors compute all the patches on one row, then proceed to their next row.

Since processors are load balanced by the number of patches, processors will take

approximately the same amount of time to compute and assemble their portions of the

GSM.

At first glance, the nodal assembly approach appears to have substantially

higher indexing overhead than element assembly. Benchmarks, however, have shown

that overhead differences between the two methods are negligible in terms of

assembly times. The high efficiency of this method for the scalar operation of stiffness

matrix assembly is evidenced in the fact that XPFEM generates and assembles global

stiffness matrices nearly two times faster than a Cray X-MP24. The benchmark turbine

blade model took 13.9 seconds to assemble on the Cray, and only 7.4 seconds on

XPFEM.

17



Boundary Conditions

The sparse solver supports applied loads and prescribed displacements.

Boundary condition information is stored in two ways: first, the rows and columns of

constrained degrees of freedom are zeroed, and the diagonal term is assigned unity.

Second, a table of boolean variables is maintained to tell whether or not a degree of

freedom is constrained. Using this information, the matrix-vector multiply routine can

skip entire rows which would otherwise be wasted on multiplies involving only zero

terms.

Parallel Jacobi-Conditioned Conjugate Gradient Solver

The Jacobi-Conditioned Conjugate Gradient (JCG) method uses the inverse of

the GSM's diagonal as a preconditioning matrix for the Conjugate Gradient iterative

technique. Jacobi preconditioning is desirable in parallel systems for several reasons:

the preconditioning matrix is trivial to obtain (other preconditioning methods such as

Incomplete Cholesky Decomposition use derivatives of Gaussian elimination-based

direct solvers which are difficult to load balance efficiently in parallel), takes little extra

storage (the diagonal matrix need only be stored as a vector), and provides good

convergence for a minimal computational expense.

There are several ways of decomposing the JCG method on multiple, local

memory processors. To find the task distribution appropriate for the application, the

implementer must make decisions which strike a balance between memory usage,

computation, communication, problem size, and the number of processors anticipated.

For small systems of equations to be solved on few processors, for example, each

processor can store complete copies of each of the six working vectors thereby saving

on communication, but performing redundant computations. The trade-off between

communication and computation changes with problem size; time taken by redundant

computations grows more quickly than time taken by communication.

The design goal for the sparse solver was to solve very large problems on many

processors, For this reason, the intermediate variables in the JCG method were

distributed so that only one working vector is stored in its entirety on each processor,

no redundant computations are performed, and three global sums are exchanged at
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each iteration (two scalar sums and one vector sum).

algorithm and variables.

Effects of Bandwidth

Appendix C outlines the
]9

Conventional banded matrix solvers such as those used by NASTRAN attempt

to simultaneously minimize both storage and computational requirements by storing,

and operating on, only the stiffness terms that fall within the bandwidth of the FE

matrix. The scheme works well for models like beams and cantilevers which can be

made with tight bands, but often results in wasteful storage and computation of zero

terms when complex models are built.

Bandwidth Has Minimal Affect on Storage Requirements

Unlike conventional banded solvers, the storage requirements of the sparse

solver in XPFEM is only marginally affected by bandwidth. Only non-zero terms of the

GSM are stored, regardless of the bandwidth, so the memory required by stiffness

terms remains constant. The pointer tables, however, may require proportionately

more memory (typically 25% of the GSM memory requirements) when the bandwidth

is excessively large since the rows in a poorly banded matrix are usually highly

segmented.

Bandwidth Does Not Affect Computational Requirements

The computational effort in the sparse solver, like the memory required by the

GSM, is also independent of bandwidth since operations are carried out only on non-

zero terms. The number of floating point operations required for a poorly banded

matrix identically equals the number required for a tightly banded matrix.

Bandwidth Determines Amount of Communication

Although the amount of computation does not increase, bandwidth does govern

overall solution time. At one point in the JCG iteration loop, processors exchange

portions of the projection vector, {p}, before they perform the matrix-vector multiply

(Figure 5). If the bandwidth is large, the distance, i.e., the number of processor links,

each portion of {p} must travel is also large and the amount of communication time



increases (Figure 6). The dependence of solution time on bandwidth is critical. Tightly

banded problems usually run at speed-ups of 28 (XPFEM has 32 processors), but

problems whose band extends across more than half of the matrix rarely achieve

speed-ups higher than 18.

The original NASA turbine blade model had an enormous bandwidth (it

extended across 90% of the matrix in places) and resulted in unsatisfactory parallel

performance--the resulting solution time of 96 seconds corresponds to a speed-up of

only 14--well below 50% parallel efficiency. After a crude renumbering algorithm cut

the bandwidth to 32% of the matrix, equation solution time dropped to 73 seconds

corresponding to a speed-up of 23. NASTRAN's highly effective renumbering code

reduced the bandwidth on this problem to just 13% of the matrix. Since XPFEM does

not have a similar algorithm, NASTRAN's renumbering of the turbine blade model was

used by XPFEM to further demonstrate bandwidth effects. With NASTRAN's

renumbering the turbine blade problem took 64 seconds to solve giving a speed up of

27. Renumbering had negligible effects on matrix assembly times.
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THE OUT-OF-CORE SOLVER
24

Out-of-core finite element solution methods for networks of microprocessors

pose significant design and implementation problems. The most severe restriction is

the relatively slow access time of external storage devices which are on the same cost

scale as the microprocessors themselves. Extremely fast external storage devices,

such as the solid-state secondary storage used in Cray computers, are available but

are prohibitively expensive for workstation-level computer systems.

To obtain reasonable performance from an out-of-core solver using common

external storage devices such as SCSI hard disk drives, the use of an efficient parallel

solution method that minimizes disk access is required. These requirements directly

conflict with each other: Iterative solvers are efficient in parallel but require frequent

access to the externally-stored stiffness matrix; iterative block solvers need a moderate

amount of disk access but are less efficient on multiple processors due to load

balancing difficulties; finally, direct solution methods need less disk access than

iterative methods but are also less efficient in parallel. To resolve these conflicts, a

substructuring technique adapted from [8] is proposed which takes advantage of

XPFEM's in-core conjugate gradient solver, can solve hundred thousand degree-of-

freedom problems efficiently, and requires only minimal disk access.

The proposed out-of-core parallel solution method is a variant of the

substructuring technique used by regular sequential solvers to increase solver

capacity. It exhibits three desirable features needed by a network of microprocessors:

.

=

.

Disk access time is a small fraction of total solution time, enabling

relatively slow, low-cost disk drives to be used.

The method can be made extremely efficient in parallel by having

processors decompose individual substructures.

An iterative solver can be used to solve the condensed finite element

problem efficiently on the distributed network.

The substructure concept and its implementation on a network of transputers are

described below.



The Substructure Method
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The substructure method is a technique for solving a large finite element problem

by replacing it with a set of equivalent problems, each with a much smaller number of

degrees of freedom [9,10]. The method consists of partitioning the full finite element

model into substructures, then eliminating degrees of freedom internal to each

substructure. The substructures can then be viewed as superelements which have

only boundary nodes. If the substructures contain many internal nodes relative to

boundary nodes, the size of the reduced set of equations will be several orders of

magnitude smaller than the original equations. The displacements of a

superelement's boundary nodes can be determined by solving the reduced system of

equations with appropriately modified boundary conditions. Once these

displacements are calculated, each substructure can be treated as a separate finite

element problem with applied displacement boundary conditions.

To see how this reduction can be accomplished, suppose that a finite element

problem has been subdivided into a number of substructures. Letting the superscript a

denote a particular substructure, the finite element equations for the node

displacements of the substructure have the familiar form

Kax a = fa

where x a is the displacement vector, fa is the force vector, and Ka is the stiffness

matrix of the substructure. Assembling these sets of equations over all the

substructures yields the complete set of equations for the displacements in terms of the

applied forces :

Kx=f

Now consider the matrix equation for the substructure e. Let the subscript 1 denote

boundary nodes and subscript 2 denote interior nodes of the substructure. Then the

equations for the displacements xa can be written in the form :

Ka11 xal + Ka12 xa'2 -- fal (1)

Ka21 xal + Ka22 xa2 - fa 2 (2)
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Solving (2) for the interior displacements, xa2, and substituting into (1) yields the

following matrix equation for the boundary nodes of the substructure:

[ Ka11. Ka12( Ka22)-1 Ka21 ] xal- fa1 . Ka12( Ka22)-1 fa2

Note that xa2, the interior displacements, have been removed from the finite element

equation. Assembling these equations over all substructures yields a matrix equation

K'x' =r

in which the unknowns x' are the displacements at the boundaries of the substructures

and K' and 1" are the modified global stiffness matrix and applied force vector.

Once the displacements for the boundaries of the substructures are calculated,

the displacements for the interior nodes of each substructure can be determined by

one of two methods. Either use the explicit formula

xa2 = (Ka22) -1 (fa 2 - Ka21 xal)

or solve the substructure finite element equations

K a x a _- fa

using the boundary solution as applied displacements. The second method appears

to be more appropriate since ( Ka22 )-1 may be too large to store for each

substructure. At this stage, the condensed substructures, or superelements, can be

treated as independent finite element problems and can be distributed to a network of

processors to be solved concurrently. If the superelements themselves are too large to

be solved in-core, the entire substructuring procedure may be reapplied to groups of

superelements to reduce the problem sizes even further.



Steps to Solution for Substructuring on Transputers

The steps below outline the out-of-core substructure solution method for the

network of 32 transputers in XPFEM. In addition to the 1 Mbyte of RAM on each

processor, eight 200 Mbyte hard disk drives, each with a 2 Mbyte RAM buffer, are

required. Each cluster of four transputers shares one disk drive. Further, dynamic link

switching is used to alternate between the pipeline/cluster-to-disk configuration

(Figure 7) and the tetrahedral configuration (figure 2) needed for solution. Note that,

unlike in the sparse solver, dynamic switching will not hinder solution for out-of-core

problems because the durations between reconfigures are orders of magnitude

greater (i.e. several seconds) than those in the in-core solver.

To more fully explain the substructuring concept, an example problem will be

described in detail. The example consists of a 2D finite element model of a square

plate with 288 linear quadrilateral elements in 288 rows. There are 83,521 nodes

(167,042 degrees of freedom) and 82,944 elements (Figure 8).
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Step 1: Subdivide the original model into substructures. This step is

done by the host processor. Ideally, each substructure will have a high ratio of

interior nodes to boundary nodes. For the example model, a substructure with

ideal dimensions would be a square with 18 elements to a side, giving 361

nodes and 324 elements, The full model would then be subdivided into

82,944/324 = 256 substructures. A substructure will then have 289 interior

nodes and 72 boundary nodes. One substructure is sent to each processor.

After distributing the substructures found in Step 1, the host processor becomes idle,

and the remote processors perform the remaining steps in parallel:

Step 2: Compute a stiffness matrix for the substructure.

Step 3: Reorder the stiffness matrix to separate internal and

external (boundary) degrees of freedom (Figure 9).



Step 4: Compute LUdecompositions of the K22 internal stiffness

submatrix. An LU decomposition requires (1/6)(n x n)(half-bandwidth) matrix

operations, where one matrix operation consists of a floating point multiply and a

floating point add. For n = 578 internal degrees of freedom and a half-

bandwidth of 60, the number of matrix operations is 3.3E+6. A T800 can sustain

0.5 Mflops on matrix operations, so each processor will take about 7 seconds for

decomposition.

Step 5: Eliminate internal degrees of freedom by assembling a

superelement with nodes only on the boundary. This step consists of

finding the inverse to an upper triangular matrix and two matrix-vector multiplies

(refer to the equation at the bottom of Figure 9). This step takes n2m + bran + n2b

matrix operations where b = the half-bandwidth, m = external degrees of freedom

and n = internal degrees of freedom. In the example problem, n = 578, m = 144

and b = 60; therefore, the number of matrix operations is approximately 7.3E+7

and will take about 146 seconds on one T800.

Step 6: Send the superelement stiffness matrix to the transputer

disk Interface to be written to disk, The superelement stiffness matrices

for the example problem have (144) 2 = 20,736 terms, or 165,888 bytes. During

this phase, one link from each transputer in a cluster of four is joined to the

transputer disk controller. All four transputers simultaneously send their data to

the disk controller which stores the data in its 2 Mbyte buffer. The transputers are

then delayed only by the amount of time it takes to transmit the decomposed

matrix over a link, which is less than 1 second. The disk controller starts writing

as soon as it begins to receive data, and will continue to do so after the

transputers have resumed computations.

Steps 2-6 are repeated until each substructure has been condensed into a

superelement. With 82,944 elements in the original model, 256 elements per

superelement and 32 processors, 10 cycles of Steps 2-7 are needed to condense the

entire model into superelements. The time for each cycle includes:
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7

146

seconds for assembling a substructure stiffness matrix

seconds to perform a LU decomposition on the internal node submatrix

seconds to compute the superelement stiffness matrix by eliminating

internal degrees of freedom

second to write the superelement stiffness matrices to disk

Each cycle then takes about 159 seconds, and 10 cycles take 1590 seconds.

Step 7: If the condensed problem is small enough, solve it in-core

with XPFEM's sparse solver. If it is still too large, form

substructures out of the superelements, condense them into a next

higher level of superelements and repeat Steps 1-7. After eliminating

interior nodes in the example problem, there will be 19 rows and 19 columns of

nodes in the model (Figure 10). Rows and columns have 289 nodes each, so

there are now 9,537 nodes (nodes at intersections of a row and column are

counted only once). This problem can be solved in the collective core memory of

all 32 processors with the sparse solver described in Section II1.1. It is important

to note, however, that global stiffness matrices (GSM) generated from

superelements will be much more full than the GSM's generated from regular

elements. This reduces the size of the problem which can be solved in-core with

the sparse solver. Solution time for the relatively dense in-core problem with

9,537 nodes is estimated at 1200 seconds.

Step 8: Write the displacement solution to disk.

Step 9: Compute displacements of eliminated nodes one

substructure at a time. Each processor recomputes the stiffness matrix and

sets up a finite element problem using the known displacements from Step 7 as

applied displacements to the boundary of the substructure. The separate

substructure finite element problems are small (between 300 and 400 nodes)

and are computed quickly on each processor. Solution time for such small

problems on one processor is estimated to be less than 40 seconds.

Total solution time for the sample problem of 167,042 degrees of freedom, using a

substructure/superelement solution technique on 32 transputers with 8 hard disk

drives is then estimated to be under 2900 seconds, or 48.3 minutes.
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Secondary Storage Hardware Considerations

In order to implement the out-of-core substructuring technique as described

above, it will be necessary to use a more advanced transputer disk drive interface. The

new interface would contain a 32-bit T800 with 2 Mbytes of memory, 4 bidirectional

transputer links for communication with the network and a SCSl controller for

communication with a SCSl compatable disk drive. With 2 Mbytes of onboard memory

the interface could accommodate a fully functioning disk operating system program

and have approximately 500 Kbytes of memory per transputer link to be used as I/O

buffers. The disk operating system would be capable of executing disk access

requests received from any of the four transputer links. With this configuration, as

many as four transputers can simultaneously access buffered I/O from a disk drive at

rates approaching 2 Mbytes/second. For the purposes of the substructure solver, one

interface and one 200 Mbyte Winchester disk drive would be required for every four

transputers in the solver network. The basic configuration is illustrated in Figure 7.

3O



o Pipeline link

m • Reconfigurable link

Network

Transputer "-- l

i ''
i NreantWspkter_

t _ Transputer-SCSI } SCSi COMPATABLE 1

Interface DISK DRIVE

2 Mbyte Cache

Transputer DISK DRIVE ATTRIBUTES

i .. • 1.0 Mbyte/s transfer rateI • 16 ms access time

• 16 Kbyte cache buffer

_etwork

Transputer
m

J

3L

FIGURE 7

NETWORK DISK DRIVE CONFIGURATION for OUT-of-CORE SOLVER



32

288 elements across
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Figure 8

A large model with 83,521 nodes and 82,944

elements. This problem cannot be solved in-core.
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The FE matrix equation [K]{x} = {F}
may be partitioned as follows:

()
1

= Boundary term

()
2

= Interior term

Interior variables, x_ , can be eliminated
by rewriting the partitioned equations as:

[K-K (KI'_)K]_= F'-K, ,(K')-F

Figure 9
Matrix Partitioning
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The full model condensed into

9,537 Nodes, and 256 superelements.

This problem CAN be solved in-core.
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IV. PRE- AND POST-PROCESSING
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Pre- and post-processing modules were developed for XPFEM to achieve an

end-to-end transputer based finite element workstation. The pre-processing tasks

involved implementing FINITE QUADTREE, an automated 2-D finite element mesh

generator, in occam on the transputer development system, linking QUADTREE with

the solution procedures, and developing a NASTRAN interface for the network. Post-

processing tasks included procedures for displaying undeformed and deformed

models, calculating stresses, and displaying principal stresses and stress contours.

Additional post-processing procedures included a library of adaptive analysis routines

for identifying mesh areas requiring refinement. These adaptive analysis routines

consist of error calculations and mesh refinement operators.

FINITE QUADTREE

FINITE QUADTREE is a complete 2-D finite element pre-processing program

which employs quadrants to develop a finite element mesh. Included in FINITE

QUADTREE are modules for geometric modeling, creating a materials library, defining

a physical problem using constraints and forces, meshing the geometric model,

refining the mesh, and writing model files to disk.

FINITE QUADTREE meshes geometric models by enclosing the model in a

rectangle and successively subdividing the rectangle into quadrants until the

designated level of refinement is obtained. (Figure 11) This quadrant method results

in extensive tree structures within QUADTREE. The lowest level of the tree is

associated with the elements of the finite element mesh.

Geometric models created in QUADTREE are based on the geometric entities

vertex, edge, and face (Figure 12). Using edge types such as lines, quadratics, and

arcs, the geometry of an object can be specified precisely and manipulated easily in

contrast to element based modelers. Figures 13, 14 and 15 demonstrate the

QUADTREE meshing process before elements are constructed. In Figure 13 the

boundary of the geometric model is discretized. Following this discretization,

boundary quadrants and then interior quadrants are identified and inserted. Figure 14

shows the model sectioned into quadrants. These quadrants are repositioned, as in

Figure 15, to simplify the creation of robust finite elements. The finite elements are



created witl • the quadrants using the quadrant vertices, midpoints, and quarter-

points as nodes.

FINITE QUADTREE was developed in FORTRAN by researchers at Rensselaer

Polytechnic Institute. The maturity of the occam compiler for transputers, the goal of

implementing QUADTREE on transputers, and the concept of eventually developing a

distributed mesh generator for a transputer network necessitated a translation of

FINITE QUADTREE to occam. Using a FORTRAN-to-occam translator and

restructuring the program by eliminating GO TO's and substituting the occam construct

RETYPES for common blocks permitted FINITE QUADTREE to be implemented in its

entirety on a 4 Mbyte T800 transputer development board. Graphics output from

QUADTREE is accomplished either through the network graphics system (B408/B409

modules) or an EGA/VGA graphics card.

A conceptual design for distributed mesh generation was completed in this

research effort. The design, which requires adaptation of FINITE QUADTREE using a

coloring scheme, is described in Appendix H.

NASTRAN Interface
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To facilitate use of XPFEM, a NASTRAN interface was completed and

integrated into the system. The interface receives a fixed-format COSMIC or MSC

NASTRAN bulk data deck, analyzes the included cards, translates the data to XPFEM

format, and generates the standard XPFEM input files for connectivity and constraints,

nodes, and forces (Figure 16).

The current version of the NASTRAN interface is designed only for

displacement solutions. Data deck cards recognized by the interface are listed in

Appendix G. Unrecognized cards are echoed to screen but not written to file.

XPPOST

Quantities of primary interest in finite element analysis (e.g., stresses) are often

derived quantities, i.e., quantities which must be calculated from computational data.

In structural analysis, the stresses are derived from the displacements, which are

obtained from the solution of the finite element equations. Because of the derived



nature of relevant quantities and the discretized nature of finite element analysis, post-

processing of results is required. This post-processing not only includes calculating

derived quantities but also smoothing and effectively displaying data. XPPOST uses

distributed processing and the enhanced graphics capabilities of the transputer

network to provide several options for viewing models and stresses (Figures 17 and

18).

XPPOST requires connectivity, nodal coordinate, force, constraint and

displacement data. Models are displayed in normalized coordinates at one-half to

three-fourths screen size. Undeformed and deformed 2-D and 3-D models are

displayed as wire-frame models. A homogeneous transformation matrix permits

scaling, translation, and rotation of the displayed model. Orthogonal or perspective

viewing is also implemented using the transformation matrix.

Stress options for 2-D models in XPPOST include principal stresses, maximum

shear stress and stress contours for normal and shear stresses. The principal stress

and stress contour routines are based on analytical equations for stresses at a point.

For the principal stress option, normal and shear stresses at the centroid of each

element are calculated and transformed to obtain the principal stresses, maximum

shear stress, and angle of orientation. Using stress bars to indicate relative

magnitude, these stress values and orientation can be displayed with or without the

model. Options enable principal tensile, compressive, combined tensile and

compressive, or shear stresses to be displayed.

Stress contours are obtained by smoothing calculated stress values at the

integration points to the nodes for each element. The smoothing matrices are derived

from a least squares analysis. Prior to nodal averaging the smoothed nodal values

are used to calculate centroidal stress values. Contours are displayed by creating

contour triangles consisting of two consecutive nodes of the element and the element

centroid. A color look-up table provides the necessary fill information.

Adaptive Analysis

The adaptive analysis capability implemented in XPFEM employs strain energy

error analysis to successively refine a finite element mesh and reanalyze the resulting

model until element errors meet a specified tolerance (Figure 19). The XPFEM

3?



adaptive analysis capability is a practical design tool due to the combination of

acceptable solution turnaround times (a result of the computational speed of XPFEM),
automated mesh generation available in FINITE QUADTREE, and advanced error
analysis algorithms employing bubble functions.

38

The error analysis algorithms of Baehmann [11] determine the areas of
refinement. In these algorithms, errors within the interior of the finite elements are

assumed significant and errors occurring at the finite element boundaries (i.e., "jump"

errors) are assumed negligible. These assumptions permit cubic and quartic bubble

functions which vanish on element edges (Figure 20) to be used in a higher order

computation of element error (Figure 21). Element errors and total global error are
computed in the energy norm. From the total global error and the calculated strain

energy obtained from the finite element solution, an approximate relative error is

computed (Figure 21). The exact relative error is unknown since, in general, the exact
strain energy is unavailable.

Mesh refinement is necessary if the approximate relative error exceeds a given

tolerance. Areas of refinement are determined by comparing each element error to the

average element error for the entire model. An element is identified for refinement if its

error is larger than the average element error.

A robust adaptive mesh refinement scheme must consider two situations:

models with singularities, and large versus small global error. By controlling the level

of refinement for different refinement areas, the implemented adaptive analysis

scheme accounts for both of these refinement situations to distribute relative error

evenly among the finite elements.
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FIGURE 13

Boundary Discretization
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FIGURE 14

Discretization of the

geometric model into quadrants
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FIGURE 15

Re-positioning quadrant
vertices using smoothing



CONNECTIVITY

# nodes, # elements

Element #, Material #,

# Constrained nodes

Constraint #,

FILE

Nodes

DOF, Nodes

GRID FILE

Young's modulus
Poisson's ratio

# Nodes

Node#, x, y, z

# Forces

Force #,

FORCE FILE

Magnitude, Directional Vector
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Files output from

FIGURE 16
NASTRAN interface in XPFEM input format
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I READ DATA FILES i

*.FRC *.XYZ I

*.CON *.APD I

Sigma X

Sigma Y

Sigma XY

DISPLAY STRESS CONTOURS

Scaling

# of Contours

I DISPLAY MODEL

I undef°rmed I
I Deformed I

DISPLAY PRINCIPAL STRESSES

Compressive Stress

Tensile Stress

Both

Maximum Shear Stress

DEFORMATION SCALE

TRANSFORM MODEL

Rotation Scaling I

FIGURE 17

Capabilities of XPPOST.2d,
the two-dimensional post-processing module of XPFEM



READ DATA FILES

*.FRC *.XYZ I

*.CON *.APD I

DISPLAY MODEL

I Undeformed I
I Deformed I

DEFORMATION SCALE

TRANSFORM MODEL

Rotation Scaling

Translation Zoom

PROJECTION

Orthographic I

FIGURE 18

Capabilities of XPPOST.3d,

the three-dimensional post-processing module of XPFEM
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FIGURE
Adaptive Analysis algorithm

19
implemented in XPFEM



48

E i = C1_ 1 + C2_2

FIGURE 20

Bubble functions used for error

interpolation in the adaptive analysis module
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Element errors calculated in energy norm

IIE_[I= ([fl (BEi) T O BE i dxdy) 1/2

Total error:

N
[IEI!2= E [IEi[I2

i=1

N = number of elements

Approximate relative percent error:

 u+E)-u
_k = 100 x (u + E) k

Error

FIGURE 21

calculations for adaptive analysis



_(PFEM: A TRANSPUTER BASED FINITE ELEMENT WORKSTATION
5O

The primary objective of this effort, a turnkey transputer based finite element

workstation, required integration of the previously described pre-processing, solution,

and post-processing modules. Success towards achieving this objective may be

measured by the capabilities of the resulting prototype system. The integrated

prototype enables an analyst, using mouse and keyboard input, to create and mesh a

geometric model, or interface and input a NASTRAN displacement model, compute

and solve the resulting finite element equations and post-process resulting data to

display deformed geometry, principal stresses, and stress contours or perform error

calculations for adaptive analysis.

Integration of the various components of XPFEM on the transputer network was

accomplished using menu driven procedures. A main menu (Figure 22) enables

various analysis modules to be selected. Each module contains a system of checks to

insure that the proper data files are available; if not, control is returned to the main

menu and another selection is required. Detailed use of XPFEM is discussed in

Appendix A, XPFEM User's Manual.

Screens from FINITE QUADTREE are shown in Figures 23 and 24. In Figure

23, the mesh generation menu with a geometric model is displayed. This figure not

only displays the various utilities available for generating a mesh, but also displays the

general working menu format for pre- and post-processing in XPFEM. Also seen in

Figure 23 are the markers indicating the mesh control parameters for the vertices,

edges, and face of the geometric model. The optional background grid can be refined

and the workspace scale adjusted in module WORKSPACE GRID. Figure 24 displays

a mesh and refinements produced using the mesh generation module. The initial

mesh was created with default modeling parameters for the vertices, edges, and face

of the geometric model. The refinements were achieved by varying the modeling

parameters of specific vertices and edges. Relative and absolute mesh control points

unrelated to the geometry are also available for mesh refinement. For a relative

control point, the mesh refinement level at the point equals the sum of the point's

modeling parameter and the modeling parameter of the surrounding face. For an

absolute control point, the modeling parameter of the point is the level of mesh

refinement.



Computational times for computing, assembling, and solving finite element

equations on the 32 processor network are shown in Figures 25-28. Figure 25 is a

comparison of the computational and assembly times of the global stiffness matrix of

the NASA SSME turbine blade model. The blade model contains 1025 8-node brick

elements and 4500 independent degrees-of-freedom. The results show that, for the

scalar operation of computing and assembling the global stiffness matrix, the XPFEM

system outperforms the NASA/Lewis Cray X-MP24 by a factor of two. A comparison of

the solution times for the system of finite element equations of the blade model is

shown in Figure 26. In this vectorizable operation, COSMIC NASTRAN on the Cray X-

MP24 was six times faster than the XPFEM system. Overall, the total solution time

(computation, assembly and solution of the finite element equations) of the turbine

blade model on the XPFEM system was one-third the speed of the Cray X-MP24 and

70 times faster than a VAX 11/780 executing COSMIC NASTRAN (Figures 27 and 28).

5]

Results from XPPOST, the post-processing module of XPFEM, are displayed in

Figures 29-32. Figure 29 shows the undeformed turbine blade model displayed in

wire-frame mode and Figure 30 shows both undeformed and deformed models

concurrently. The display of the deformed model also depicts the applied constraints

and forces. Figure 31 consists of stress contours in a two-dimensional C-clamp

constrained at three points on the lower right and loaded with a point load at the upper

right corner. The contours displayed in Figure 31 are those for shear stress. Normal

stress contours in the x and y directions are also available in XPFEM. The number of

contour levels in Figure 31 is 30; this parameter is set by the user and may range from

2 to 224.

Principal stresses for the two-dimensional C-clamp model are shown in Figure

32. This figure displays the calculated tensile and compressive principal stresses at

the element centroid. The stress bars indicate the stress orientation with respect to the

x-axis. Their lengths are normalized so that the greatest principal stress is equal to the

averaged side length of the largest element. XPFEM options also permit tensile,

compressive, or maximum shear stresses to be displayed separately with or without

the finite element model.

Adaptive analysis results are presented in Figure 33. The sequence of meshes

displayed in Figure 33 indicates the future capability of the XPFEM adaptive analysis

module to significantly refine a mesh at a singularity and to distribute mesh error



following this singularity refinement. Currently, this module, which has been tested

and implemented on a MicroVAX, is implemented in XPFEM but a mesh generation

error prevents it from being fully robust.
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XPFEM

version 89.1

PROMPT/ERROR:

[ l
CURRENT PROBLEM:

[SPARTA J

NEW PROBLEM

PROBLEM TYPE

SPECIFIER:

! EXAMPLE1 .J

[ OLD PROBLEM J

1[ 1WORKSPACE GRID

FINITE QUADTREE MODEL GEOMETRY J

i MATERIAL PROPERTIES J[ ANALYSIS ATTRIBUTES I

FINITE QUADTREE MESH GENERATOR J

I1_ ADAPTIVE ANALYSIS J

I OUTPUT FOR ANALYSIS ][ READ NASTRAN FILE

! 2-D SOLVER j[ 3-D SOLVER J

2-D POST PROCESSOR J l 3-D POST PROCESSOR J

EXIT J

FIGURE 22

Main menu for XPFEM
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FIGURE 33

Adaptive analysis example
of a plate in uniform tension



VI. CONCLUSIONS AND RECOMMENDATIONS
65

The structural analysis system developed in this Phase II SBIR effort

demonstrates the vast potential of a transputer based workstation. The essential

foundation has been laid for a class of application-specific coprocessing hardware

and software which can provide supercomputing analysis capability at dramatically

lower cost (Figure 34). The major objective of demonstrating highly efficient parallel

computation for problems common to demanding industrial-level applications was

clearly achieved. This confirms the forecasted potential and strongly supports a

recommendation for commercialization.

The delivered prototype version of XPFEM is limited to solving static, linear finite

element problems with 20,000 or fewer degrees of freedom. Although the major

foundation of an end-to-end parallel finite element workstation has been achieved,

additional work is needed to expand XPFEM's capabilities to the full level expected by

industrial users. It is recommended that additional key capabilities be incorporated

that would require about twelve man-months of effort. These include non-linear,

dynamic and thermal analyses, and the use of alternate out-of-core solvers for

problems with hundreds of thousands of degrees of freedom.

During the development of XPFEM, a number of additional features were

identified which could further expand or improve the capabilities of the workstation. It

is further recommended that these enhancements and features be implemented to

make XPFEM a fully capable, dramatically more cost-effective alternative to the finite

element analysis systems currently running on existing supercomputers. Additional

conclusions and a summary description of recommended enhancements and

improvement features are provided below.

Enhancements to Pre-Processina

Improved Boundary Conditions

The current user interface demonstrates transputer based implementation

concepts but permits only the constraint and loading of vertices. Edge and face

constraints are necessary additions to XPFEM and can be implemented easily. In



addition, the menu for boundary and initial conditions is being evaluated to determine

if inputs can be made with fewer menu selections.

Three-Dimensional Mesh Generation

66

As defined in the SBIR Phase II Statement of Work, the current mesh generator

runs only on two dimensional models. SPARTA recently received from RPI the FINITE

OCTREE code (in FORTRAN) for 3D mesh generation, and is evaluating portions of it

to determine how best to implement the code in occam. A three dimensional capability

is important to many applications and either direct integration or bundling of a third-

party 3D mesh generator is recommended.

Parallel Mesh Generation

A peculiar aspect of XPFEM is that it takes longer to mesh large problems than it

does to solve them. This discrepancy can be corrected with the use of parallel mesh

generation, a new concept being investigated by the RPI researchers (Appendix H).

Three dimensional models in particular will benefit from distributed mesh generation

since 3D models require much more time to mesh.

Node Renumbering

Large bandwidths have an adverse effect on nearly all linear equation solvers.

Although not affected by bandwith in the typical manner of increased storage and

computational requirements, the JCG solver demonstrated that large bandwidths

sharply increase communication, and therefore, solution times.

Renumbering routines can reduce bandwith to near optimum levels and are

essential in finite element programs. XPFEM has an excellent renumbering algorithm

but it is integrated into the mesh generator and therefore only works on models

generated with FINITE QUADTREE. Externally created models are solved with their

original numbering schemes. In order to efficiently solve models built on other

systems, a stand-alone renumbering routine must be added to XPFEM. Renumbering

codes are common so this addition would not require intensive effort.



Enhancements to the Solver

The sparse Jacobi-conditioned Conjugate Gradient (JCG) equation solver

developed in the Phase II research is innovative, fast and efficient but is limited to

solving symmetrical systems of equations that reside entirely in core memory.

Different solution techniques must be added to handle more complex boundary

conditions and marginally stable problems. Also, despite the sparse storage

implementation, FE models can always be made to exceed in-core memory capability,

so the out-of-core solver described in Section III must be added. Some alternative

large-capacity solution methods are described in Increasing Solver Capacity. Finally,

a number of minor modifications to the sparse JCG solver were identified during the

development of XPFEM which would markedly increase its performance. These

modifications are described under Fine-Tuning the JCG Solver.

Increasing Solver Capacity

Methods are available to raise the current in-core FE problem size limit from

20,000 degrees of freedom to well over 100,000 degrees of freedom. Several of these

methods need some form of external storage to save intermediate results and can be

considered hybrid in-core/out-of-core methods. Some methods involve advanced

concepts in FE analysis and could take considerable coding effort while other, more

pedestrian approaches could be easily implemented but would not be efficient.

Recomputing the GSM

The simplest method of expanding capacity is to compute, rather than store,

terms of the global stiffness matrix as they are needed in the computations. This

approach is highly inefficient--large problems will require tens of thousands of

redundant GSM computations--but is also easy to implement in XPFEM and provides

for a quick link to extremely large FE problems.

Multigridding

Multigridding, originally proposed to accelerate finite difference solutions, has

tremendous potential for speeding up FE analysis. In this method, a densely meshed

model is solved by iteratively solving increasingly coarser meshes on the same model,

and carrying solution approximations back and forth (via interpolation and

67



extrapolation) between the different mesh granularities. Order of magnitude

improvements in solution times can be realized with multigridding. Disadvantages are

that memory requirements are doubled, and that software development is difficult.

In the context of increasing solver capacity, a multigrid-like approach can be

used to solve very large problems by remeshing the model coarsely so that it can be

solved entirely in-core, then extrapolating the coarse solution to the full mesh. The

extrapolated solution will then be an excellent guess to the actual solution, so time

consuming out-of-core iterations will be minimized.

Block Iterative Methods

The usual calculate versus communicate dilemma in parallel programming

becomes even more complicated with the addition of external storage devices. Mass

data storage devices such as tapes and disk drives are, by their physical (rather than

electronic) natures, extremely slow on a microprocessor's time scale and therefore

introduce stringent design parameters to parallel equation solvers that use them. The

programming question expands to calculate v. interprocessor communicate v. external

storage communicate. The method described in Recomputing the GSM abandons all

form of communication and calculates everything repeatedly. The multigrid method

uses external storage only as an intermediate step between relatively long in-core

compute cycles. Fully out-of-core methods use external storage as an integral part of

the solution process.

Alternative fully out-of-core methods to the one presented in Section III are the

parallel block Conjugate Gradient methods described in [12,13]. These methods

preserve the iterative nature of the current XPFEM solver and would therefore

integrate perfectly with adaptive analysis and multigridding. However, several load

balancing issues remain to be resolved.

68

Fine-Tuning the JCG Solver

The current implementation of the JCG solver is fast and efficient but a few

modifications can improve it even further. Perhaps the most significant modification

would be an improved preconditioner. More powerful preconditioners generate larger

preconditioning matrices which result in more floating point operations per iteration,

yet maintain the identical number of communication steps per iteration. As a
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consequence, the calculate-to-communicate ratio and, therefore, efficiency, increases.

In addition, improved preconditioning reduces the number of iterations. These

features combine to make a vastly more efficient parallel solver. Other refinements

include adding an efficient renumbering scheme, investigating more uniform load

balancing methods, and rewriting the pointer tables to use less memory.

Preconditioning by Blocks

The JCG solver operates on a term-by-term basis in which degrees of freedom

are operated on one at a time. More importantly, the Jacobi preconditioning matrix

has only one term on each row. If the solver were to operate on small blocks of terms,

and the preconditioning matrix consisted of blocks of terms rather than just one term

on the diagonal, a much stronger preconditioning would occur.

It is suggested that the blocks be multiples of the dimension of the problem (a

multiple of a patch) since the code already stores data in this manner. The small block

method would incur a minimal penalty in storing the larger preconditioning matrix.

Blocks on the order of 4 times the dimension will need an additional 20 Kbytes per

processor to store the preconditioning matrix.

Polynomial Preconditioning

Most Conjugate Gradient preconditioners rely on some form of Gaussian

elimination to create a preconditioning matrix. Unfortunately, these schemes are not

efficient on banded or sparse matrices when distributed over many processors. The

polynomial preconditioning method as described in [14], however, is based on a

sequence of matrix-vector multiplies (as the JCG method itself is) which are highly

efficient on multiprocessor systems. This preconditioning method appears ideally

suited for XPFEM.

Improved Load Balancing

Despite the term-wise load distribution, some processors do as much as 5%

more work than other processors. This slight discrepancy reduces speed-ups, since

the unloaded processors become completely idle while their more loaded

counterparts finish their tasks. The nature of the load imbalance can be revealed by

placing timing calls after each math routine.



Rewriting Pointer Tables

The pointers required for the sparse matrix assembly and matrix multiplication

routines take nearly 20% of each processor's memory. This value can be reduced

sharply if some of the tables were written as one dimensional vectors with entry

pointers rather than the current two dimensional arrays. This rewrite, however, could

slightly increase overhead and would take several weeks of coding.

Enhancements tO Post-Processino

The interpretation of finite element solutions depends on a large extent to the

form in which the solutions are presented. Proposed enhancements include

illustrating structurally critical stress contours, and speeding up portions of post-

processing with parallel computation.

?0

Plasticity and Zero Stress Contours

To assist the structural designer in determining whether or not the model in

question can withstand design loads, specially colored contour bands can be added

which indicate regions of plasticity. Other special contour bands can indicate regions

in the model which experience negligible stresses (within a user-defined tolerance).

The addition of these features would involve a minimal implementation effort and

would be immensely practical.

Parallel Contour Computation

The calculation of stress contour levels can take a considerable amount of time

(20 seconds or more) for large models. These computations are currently done on the

host transputer, but can easily be distributed since the computations are element-

based and therefore completely parallel. The addition of parallel contour computation

would make this portion of post-processing appear virtually instantaneous.

Three Dimensional Stress Contours

Current post processing can only display stress contours on two dimensional

models. Stress contours are such a vital part of the FE analysis, however, that one of

the first additions recommended for XPFEM is a three dimensional stress contour

capability.



Additional Features

Although XPFEM currently solves only static, linear FE problems, the software

foundation for a comprehensive structural analysis workstation is firmly in place.

Additional capabilities such as thermal, non-linear and time dependent solutions can

be added directly since the techniques used to solve these problems can be written as

straight-forward extensions to the existing static, linear solver. Significant additions to

input and output routines will have to be made to accomodate new material properties

and initial conditions, but the core structure (and performance) of the solver will remain

unchanged.

Additional features have been divided in two classes, based on how quickly

they can be implemented on XPFEM. The first class of features includes transient,

modal and thermal analyses. It is recommended that these be incorporated into

XPFEM as an immediate follow on effort to produce a commercial product.

The second class of features includes non-linear analysis, frequency response

and computational fluid dynamics. These features involve substantial software

modifications. It is recommended that these be added after XPFEM is introduced to

the market.

In summary, a clearly significant capability for parallel acceleration of linear,

static structural engineering analysis is in hand. A critical evaluation of the

implemented system relative to industrial application requirements has been made

and a number of enhancements identified to meet the needs of over 95% of the

structural analysis user base. A phased implementation approach has been outlined

based on a summary description of each additional feature.

If accomplished in a timely manner, the resulting system can provide affordable,

desktop supercomputing for finite element analysis to a wide segment of the ten billion

dollar structural analysis market place. The impact of dramatically improved turn-

around and wider availability on engineering productivity is potentially revolutionary.
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APPENDIX A

XPFEM USER'S MANUAL

Execution of XPFEM is initiated from the IBM PC-AT compatible host

computer by performing the following steps:

1. At the MS-DOS prompt c : \>, move to the XPFEM directory:

C:\> cd \fes12\disk

C:\FESI2\DISK>

2. Invoke the Transputer Development System (TDS):

C:\FESI2\DISK>

... XPFEM.TOP

tds2

3. Enter the XPFEM top level fold:

<7 on the numeric keypad>

4. Move the cursor to the XPFEM executable code fold:

<down arrow several times, until the cursor is

on...EXE XPqtree>

5. Load XPFEM into the host transputer's memory:

F5

6. Run XPFEM:

F6
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XPFEM has two monitors, both of which are active during operation. The

graphics screen is the primary display device (displays menus, finite element

models and all graphics information), and the PC's monitor is the secondary

display (for showing status information, descriptions of file transactions, and a

run-time display of the error norm during solution).

At the start of XPFEM, the user is prompted with a title page on the

primary screen. To proceed, the user moves the mouse. This action causes the

main menu of XPFEM to be displayed (Figure 22). The main menu contains

fifteen options. Menu options are selected using the left or middle buttons on

the mouse. The right mouse button is reserved for controlling mouse speed.

The main menu also contains title, specifier, and prompt/error display

boxes. XPFEM automatically loads the latest model into memory (assuming

there is a TITLES.DAT file containing the latest model). The title and specifier of

the current problem appear in the appropriate boxes. Possible errors include

NO GEOMETRY DEFINED and NO FACES ASSIGNED.

Clicking the right mouse button from within a program module will make

visible a bar chart of the mouse rate. Moving the mouse up and down increases

and decreases the rate, respectively. Note that a high mouse rate causes the

mouse to move several screen pixels for each input and therefore prohibits the

user from refined point selection required for vertices or edges of a model.

Erasing the workspace within a program module is accomplished using

the CLEAR WRKSPCE option. Since segmentation is not available on the

INMOS B409 board, erasing the workspace is completed by blanking the

viewport coinciding with the workspace; therefore, to re-display selected model

features, each feature must be re-toggled.

The fifteen options available from the main menu are described below.
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_(PFEM OPTIONS

NEW PROBLEM

Executing module NEW PROBLEM initializes XPFEM for a new problem.

The user is prompted for the problem title and specifier; both identifiers must be

legal file names without .* extensions, and must contain fewer than ten

characters. Data arrays for scaling, geometric modeling, and mesh generation

are set to default values.

RECOVER OLD PROBLEM

Module RECOVER OLD PROBLEM permits retrieval of a problem stored

on disk. The user is prompted for the problem specifier. Existence of the

requested problem is checked. If the problem exists, it is placed in core as the

current problem; otherwise, a warning bell is sounded and the current problem

is unaltered.

PROBLEM TYPE

Module PROBLEM TYPE not implemented in XPFEM, version 89.1.

WORKSPACE GRID

Options for defining the user workspace are provided in module

WORKSPACE GRID. Options include grid size, grid scale, origin location, and

grid line additions. Details for defining the workspace parameters are

discussed on pages 4.2 - 4.4 of the FINITE QUADTREE Mesh Generator User's

Manual.

FINITE QUADTREE GEOMETRIC MODELER

Executing module FINITE QUADTREE GEOMETRIC MODELER provides

a menu interface for geometric modeling using vertices, edges, and faces.

Details for creating a geometric model are discussed in Chapters 3 and 4
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(pages 3.1 - 4.12) of theFINITE QUADTREE Mesh Generator User's Manual

The user is required to declare model faces in this module (using ASSIGN

FACE) prior to material assignment or mesh creation. Module options currently

unavailable include SPLINE, ELLIPSE, AIRFOIL, CONCATENATE EDGE,

CLOSED EDGE, WITH VERTEX, and RESET EDGE.

MATERIAL PROPERTIES

Module MATERIAL PROPERTIES provides a menu interface for creating,

editing, and assigning material properties. Details for using this feature of

XPFEM are discussed on pages 4.12 - 4.15 of the FINITE QUADTREE Mesh

Generator User's Manual. Currently options ORTHOTROPIC MATERIAL,

ANISOTROPIC MATERIAL, SCROLL UP, SCROLL DOWN, LINEAR

THICKNESS, SORT ON INDUSTRY, and SORT ON INTERNAL are not

implemented.

ANALYSIS ATTRIBUTES

Executing module ANALYSIS ATTRIBUTES provides the user with a

menu interface for assigning boundary conditions. Permissible attributes

include those associated with two-dimensional static analysis; therefore, menu

options currently unavailable include INITIAL CONDITION, U' (velocity), and

FACE.

The user initializes the attribute data arrays by selecting DEL ALL

ATTRIBS. To assign a boundary condition, the user is required to select

BOUNDARY CONDITION, specify the type (U for displacement and F for force),

identify the geometric entity to which the condition is applied (VERTEX or

EDGE), and input the boundary condition (1ST COMP ONLY, 2ND COMP

ONLY, SCALAR, or VECTOR, and UNIFORM, LINEAR, or QUADRATIC). Two

user prompts appear during the definition process - one for identifying the

location of the geometric entity and one for inputting the magnitude of the

boundary condition. To define a boundary condition with two components, the

options 1ST COMP and 2ND COMP remain deselected. Following definition,

the boundary condition is stored using STORE ATTRIB. Prior to selecting

STORE ATTRIB, selected options may be altered without affecting the database.
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Using CLEAR ATTRIB, all active options may be deselected.

conditions can also be labeled using LABEL.

Boundary

In summary, a boundary condition is assigned by activating one option in

each of the listed groups:

1. BOUNDARY CONDITION

2. U (displacement)

F (force)

3. VERTEX (prompted to identify geometric entity)

FORCE

4. 1ST COMP ONLY (no selection indicates both components)

2ND COMP ONLY

5. SCALAR

VECTOR

o

o

X/Y

TANGENT/NORMAL

UNIFORM (prompted for coefficients)

LINEAR

QUADRATIC

8. STORE ATTRIB
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As an example of applying attributes, a vertex may be constrained using

the following sequence of selections:

DEL ALL ATTRIB

BOUNDARY CONDITION

U

VERTEX

VECTOR

X/Y

UNIFORM

STORE ATFRIB

(for the first attribute only)

(identify vertex when prompted)

(enter 0.0, 0.0 as two separate entries when

prompted)

FINITE QUADTREE MESH GENERATION

A menu interface for meshing geometric models is contained in module

FINITE QUADTREE MESH GENERATION. Options enable the user to specify

mesh parameter sizes, element types, and refinement points. Detailed use of

this module is discussed in Chapters 3 and 4 (pages 3.7 - 3.8, 4.16 - 4.25) of

theFINITE QUADTREE Mesh Generator User's Manual.

OUTPUT FOR ANALYSIS

Module OUTPUT FOR ANALYSIS is a menu interface for outputting data

files. Options include viewing the model, mesh, attributes, and various

parameters. Options for creating higher order elements, specifying faces of

plane stress or plane strain, and displaying the renumbered nodes and

elements also exist. Currently, the only output format available is XPFEM

format. Selecting the option for XPFEM output causes four standard XPFEM

input files for connectivity and constraints (*.con), nodes (*.xyz), forces (*.fro.)

and applied displacements (*. apd) to be written to disk. These four files are

used as input to the solver modules.
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READ NASTRAN FILE

Module READ NASTRAN FILE is the NASTRAN interface for XPFEM.

Executing this module results in a prompt for the name of a NASTRAN file. The

designated NASTRAN file is read by XPFEM, analyzed, and translated to

XPFEM input format. Three standard XPFEM input files for connectivity and

constraints, nodes, and applied forces are written to disk and used as inputs to

the solver modules.

2D/3D SOLVER

Modules SOLVER 2D and SOLVER 3D compute a displacement solution

for an XPFEM finite element problem. The solvers are based on the conjugate

gradient method, an iterative solution for solving systems of linear equations

with positive definitive coefficient matrices.

i-

Following a selection of one of the solver modules, the user is prompted

for a tolerance level. Iterations cease when all terms of the residual error vector

have magnitudes lower than this tolerance. Typical values for the tolerance

range from 1.0E-6 to 1.0E-9. As the solver runs, the secondary display shows

the error norm at every tenth iteration.

The completed solution (nodal displacements) is written to a file on

XPDOS in the directory of the user with filename <problem name>.sol. This

file is used for post-processing in XPPOST.

The delivered prototype version of XPFEM can solve problems with

10,000 nodes in two dimensions (for 20,000 degrees of freedom) and 6,000

nodes in three dimensions (for 18,000 degrees of freedom). Other limitations

govern the number of elements used, and the complexity of the elements. See

Appendix B, Solver Limitations, for further details about solver capacity. This

appendix also shows how the solver can be modified to handle over 35,000

degrees of freedom if simple elements are used.
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2D/3D POST PROCESSOR

Executing modules 2D POST PROCESSOR/3D POST PROCESSOR

permits finite element displacement solutions to be interactively post-processed

using a menu interface. Separate menu interfaces are available for two-

dimensional and three-dimensional models.

2D POST PROCESSOR

1. DISPLAY MODEL: This option allows the user to view the model.

The user can choose to display the undeformed model, deformed model, or

both by selecting UNDFRM, DFRM, or BOTH, respectively.

2. DEFORM SCALE: This option allows the user to input the

deformation scaling factor. The default value is unity. The user should type in a

real number and the model will be updated according to the new scale. Either

DFRM or BOTH must be selected in the DISPLY MODEL in order to observe the

scaled deformed model.

3. KEY IN: This option allows the user to enter the transformation parameters

from the keyboard. The following items are available:

SCALE: When this option is selected, the current x scale value will

appear in the message box (top center of the screen), and the user will

be prompted to input the new x scale (REAL). The program repeats the

same procedure for y scale.

TRNSLT: When this option is selected, the current x translation value will

appear in the message box and the user will be prompted to input the

new x translation value (REAL). The program repeats the same

procedure for y translation.

ROTATE: The current rotation angle value appears in the message box

when this option is selected. The user is prompted to input the new

rotation angle (REAL).
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EXIT: Exit the KEY IN option.

4. CHANGE DISPLAY: This option allows the user to change the

transformation parameters by 1 unit using mouse input. The user can select the

following items:

SCALE: When this option is selected, a pop up window will appear with

options for direction (X or Y), increment (+ or -), and EXIT.

TRNSLT: When this option is selected a pop up window will appear with

options for direction (X or Y), increment (+ or -), and EXIT. The user can

continue in this option until EXIT is hit.

ROTATE: When this option is selected a pop up window will appear with

options for rotation angle (THETA), increment (+ or -), and EXIT.

ZOOM IN: This option allows the user to zoom in the view of the model.

ZOOM OUT: This option allows the user to zoom out the view of the

model.

EXIT: Exit the CHANGE DISPLAY option.

5. CONTOUR: This option allows the user to view stress contours. The user

may choose to display normal stresses in the x and y direction, and shear

stresses by selecting SIG X, SIG Y, or SlG XY, respectively. The user also has

option to input the number of contours by selecting NUM CONTOUR.

Acceptable integer values range from 2 to 224 with 224 being default. Another

option, SCALE, allows the user to enter the scale of the model from 0.5 to 0.75

with 0.5 being default. At the bottom of the work space, the color bar will be

displayed along with the type of the contour, maximum stress value, and

minimum stress value.

6. PRINCIPAL STRESS: This option allows the user to view the principal

stresses. The user can choose to display compressive stresses, tensile

stresses, both, or maximum shear stress using COMPRSS, TENSILE, BOTH,
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and SHEAR MAX, respectively. Displays with or without the model are obtained

selecting DISPLAY MODEL. At the bottom of the work space, the green line

represents the length of the maximum principal stress, the magenta line

represents the length of the maximum shear stress, the orange line indicates

compressive stress, and the cyan line indicates tensile stress.

3D POST PROCESSING

1. DISPLAY MODEL: This option allows the user to view the model. The user

can choose to display the undeformed model, deformed model, or both by

selecting UNDFRM, DFRM or BOTH, respectively.

2. DEFORM SCALE: This option allows the user to input the deformation scale.

The default value is unity. The user should type in a real number and the model

will be updated according to the new scale. Either DFRM or BOTH must be

selected in order to observe the scaled deformed model.

3. KEY IN: This option allows the user to enter the transformation parameters

from the keyboard. The following items are available:

SCALE: When this option is selected, the current x scale value will

appear in the message box, and the user will be prompted to input the

new x scale (REAL). The program repeats the same procedures for y

scale and z scale.

TRNSLT: When this option is selected, the current x translation value will

appear in the message box and the user will be prompted to input the

new x translation value (REAL). The problem repeats the same

procedures for y translation and z translation.

ROTATE: The current rotation angle value about the x-axis will appear in

the message box when this option is selected. The user is prompted to

input the new x rotation angle (REAL). The program repeats the same

procedures for rotation angles about the y and z axes.
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ZOOM: When this option is selected, the current viewpoint distance will

appear in the message box. The use is requested to input the new

viewpoint distance (REAL).

EXIT: Exit the KEY IN option.

4. CHANGE DISPLAY: This option allows the

transformation parameters by 1 unit using mouse input.

following items:

user to change the
The user can select the

SCALE: When this option is selected, a pop up window will appear with

options for direction (X, Y, or Z) increment (+ or -), and EXIT. The user

can continue in this option until EXIT is hit.

TRNSLT: When this option is selected, a pop up window will appear with

options for direction (X, Y, or Z) increment (+ or -), and EXIT. The user

can continue in this option until EXIT is hit.

ROTATE: When this option is selected, a pop up window will appear with

options for rotation angles (THETA-X, THETA-Y, THETA-Z), increment (+

or -), and EXIT. The user can continue in this option until EXIT is hit.

ZOOM IN: This option allows the user to zoom in the view of the model.

The user can continue in this option until EXIT is hit.

ZOOM OUT: This option allows the user to zoom out from the model.

The user can continue in this option until EXIT is hit.

EXIT: Exit the change display option.

5. ORTHO PRO J: This option allows the user to toggle between an

orthographic or central projection.

EXIT

Executing module EXIT returns the user to the PC operating system.



CONVERTING BINARY FILES TO TEXT FILES AND VICE VERSA

All disk files used by XPFEM are in binary format for fast input and output.

Although most of these binary files are of no interest to the user, six of them

contain data which the user may wish to examine or modify. These six files

consist of four finite element input files (connectivity [*. con], node coordinates

[*. ×yz], applied forces [*. fro] and applied displacements [*. apd]) and two

output files (node displacements [*. sol] and solution residual [*. ces]). _.XE

convert.tsr, a binary/ASCII conversion program, enables the user to

examine, in standart text format, the data contained in binary files, and

conversely, to convert text input files into binary files cabable of being read by

XPFEM.

Running convert.tsr

The file conversion program is given as a standard occam EXE. It is

accessible through the XPFEM.TOP. Load the program by hitting F5 while the

cursor is on the ... EXE convert .tsr fold, and run it with F6.

Options

Convert.tsr has three options. The first two perform bidirectional

conversions on the four input files (with suffixes of. con, . xyz, . frc and . apd),

and the third does a one-way conversion of the solution files (with suffixes . sol

and . res) from binary to text. Note that solution files may not be converted from

text format to binary format. The options appear as:

I. Convert input files from Binary to ASCII

2. Convert input files from ASCII to Binary

3. Convert solution files from Binary to ASCII

4. <quit>

After each option the program prompts for a user name, the source rite name,

the destination file name and the dimensionality of the problem.
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Binary Input Files to Text Input Files

For example, if the user wishes to convert binary input files for the 2D

beam example to text, he would select option 1 and reply with the following

prompts (bold-face letters represent user input):

Enter user name DEMO

Enter binary filename BEAM

Enter text filename BEAM TXT

Enter the Dimension (2/3, quit = I) 2

The user name DEMO was selected because the example beam problem (and

several others) was created with that user name. Note that only the root

filename is given for both binary and text files; i.e., the suffixes .con, et cetera,

are not added. After providing the four inputs above, the program will

automatically convert all four (. con, . xyz, . fro and . apd) files using the

filenames given:

binary file text file

(old files) (new files)

beam.con beam_.txt.con

beam.xyz beam_txt.xyz

beam.sol beam_txt.frc

beam.apd beam_txt.apd

It is important to give a root destination filename that indicates what the

file format is. For Option 1, the destination file will be in text format. For Option

2, the destination file will be in binary format. Typical conventions are to add

._.TXT or .._TX for new text files and _BIN or _BN for new binary files.

The newly created text files may be examined with the 'type' command

by entering XPDOS (Appendix D) and moving to the DEMO subdirectory. The

text files can also be transfered to the host PC disk via the 'dosput' command

where the files can be viewed or edited with any ASCII based wordprocessing

program.
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Text Input Files to Binary Input Files

If the user manually creates input files for XPFEM, or edits an input file

which was converted from binary to text, it is necessary to convert the text files to

binary before XPFEM can use them. Any kind of user-created or modified input

file must reside on the host PC disk (since XPDOS does not provide a means

for users to edit files) and must therefore be moved to XPDOS so that the

conversion program can reach them. See Appendix D, "Transferring Files

between XPDOS and MS-DOS," on the 'dosget' command.

Once the text files are in the proper user subdirectory on XPDOS, the

second option of the conversion program can be used to create binary input

files. The inputs are similar to those for Option 1. The example below continues

from the example in Section 1.3: assume the user first created text input files

from the 2D beam problem, then moved the files to the PC hard disk where the

beam_txt.frc file was edited. After the text editing session, the user moved the

four input files back to the DEMO subdirectory of XPDOS. The user then left

XPDOS and ran the conversion program. The following inputs to the

conversion program would produce valid XPFEM input files with rootname

BEAM_BIN:

Enter user name DEMO

Enter text filename BEAM TXT

Enter binary filename BEAM BIN

Enter the Dimension (2/3, quit = i) 2

This produces the following new files from the four input files:

text file

(old files)

beam_txt.con

beam_txt.xyz

beam_txt.frc

beam_txt.apd

binary file

(new files)

beam bin.con

beam_bin.xyz

beam bin.sol

beam_bin.apd
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Note there are now two binary input files for the 2D beam example: the

input files with rootname BEAM and the modified input files with rootname

BEAM_BIN. When running XPFEM, the user has the choice of running either

the original beam problem by specifying BEAM as the problem name, or

running the modified probtem by specifying BEAM_BIN as the probtem name.

Binary Solution Files to Text Solution Files

The third conversion option, converting binary solution files text files,

permits inspection of the numerical finite element displacement solution and the

error residual produced by that solution. In addition to the inputs for user name,

problem name and dimensionality, this option also requires input for the

number of nodes in the problem. If the user does not know how many nodes

the problem has, and if the connectivity file (*. con) for that problem exists in the

same subdirectory as the solution files, the user can let the conversion program

find the number of nodes from the .con file. If user opts for the program to

search for the connectivity and the file does not exist, the program will crash.

The conversion program reads the solution (.sol) and residual files (.res) and

writes them in text format to the file name specified by the user. The following

sample session continues from the previous examples:

Enter user name DEMO

Enter text filename BEAM BIN

Enter binary filename BEAM TXT

Enter the Dimension (2/3, quit = i) 2

i. Enter number.of.nodes

2. Get number.of.nodes from .CON file

There are 72 nodes in BEAM BIN.CON.
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This produces the following new files from the two solution files:

binary file

(old files)

-..Q .......

beam_bin .sol

beam_bi n .res

text file

(new files)

beam_txt.sol

beam_txt.res

The text solution files can by examined via the 'type' command of XPDOS, or

can be transfered to the host PC disk with 'dosput.'

Problems with EXE convert, tsr

The most frequently encountered problem with the conversion program is the

'File Not Found' error which, at this stage of development, causes the program

to crash. Whenever the conversion program fails to work properly, enter

XPDOS and verify that the expected input files are in the appropriate

subdirectory.

If input files are modified in a manner that violates the file format, the text to

binary conversion will crash. Known errors include:

1. Rather than exiting cleanly, a null string for a user or filename will cause the

program to crash. Hitting 'Enter' to quit at a name prompt will exit as the

program says, but will also cause a crash.

2. The code cannot recognize the difference between 2D and 3D problems, so

if the dimensionality is entered incorrectly, the program will crash.
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APPENDIX B

SOLVER LIMITATIONS

Due to the many variables which govern memory usage in the parallel

finite element equation solver, defining a capacity limit is difficult. In general,

the solver is limited to solving problems with up to 20,000 degrees of freedom

(d.o.f.), both in two and three dimensions. It is possible, however, that one FE

problem with 20,000 d.o.f, will run, but another equally large problem will not. It

is also possible to make minor modifications to the solver libraries and raise the

limit to 38,000 d.o.f, but this will incur several other limitations. This section

describes the primary memory parameters, how they influence memory usage,

and how the system can be reconfigured to solve the absolute largest problems

possible.

In addition to restrictions on the maximum problem size, there is also a

limit on the minimum problem size. This problem and a simple solution are

explained at the end of this appendix.

Primary Memory Parameters

Eight parameters determine how much memory a given solver

configuration requires. They are, in order of signifigance:

1. Problem Dimension (2 or 3)

2. Number of nodes

3. Number of elements

4. Maximum nodes per element

5. Maximum elements using any one node

6. Average nodes of influence

7. Average segments per row

8. Maximum fully constrained nodes
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The number of degrees of freedom in a finite element model equals the

product of the first two parameters, the problem dimension and the number of

nodes. Since memory usage is a function of six other parameters, the

dimension and number of nodes define only a subset of the critical variables.

The third most significant parameter, the number of elements, is closely

coupled to the number of nodes and the model type. If only 3 noded triangular

elements are expected, the number of elements must be atleast twice as large

as the number of nodes. If, on the otherhand, the FE model consists of 20

noded brick elements, the number of elements need only be one third of the

number of nodes. The fourth parameter, the maximum number of nodes per

element, follows directly from the same argument: lower order, two dimensional

elements will have fewer nodes per element than higher order, three

dimensional elements.

Unless the user manually creates the FE model, he or she may have little

control over the fifth parameter, the maximum number of elements sharing a

common node. A value large enough to include the worst case expected must

be assigned. Typically, triangular elements rarely result in more than 10

elements sharing any one node. Three dimensional tetrahedral elements may

have as many as 20 elements clustered about a single node.

Nodes of influence for a particular node are those remaining nodes

contained in the elements which share that particular node. For example,

imagine that six equilateral triangular elements fit together to form a hexagonal

structure. The nodes of influence for the central node are all the remaining

nodes in the structure, since all these nodes share an element with the central

node. The central node therefore has six nodes of influence. The average

number of nodes of influence for all nodes will be a function of the number of

nodes in each element, and how the elements are joined. Long slender

structures will result in a lower value for the average nodes of influence while a

densly packed structure will have a higher value.

The last two parameters, average segments per row and maximum fully

constrained nodes have minor effects on memory usage. Segments on a row

refer to the number of consecutive non-zero terms on a given row of the global
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stiffness matrix. Tightly banded problems typically have fewer than eight or ten

segments per row, while poorly banded problems can have up to thirty. Fully

constrained nodes are those which do not permit motion in any degree of

freedom. Although most FE models have only a small portion of their nodes

constrained in this manner, a relatively large value (e.g., equal to 50% of the

total number of nodes) may be assigned to Maximum fully constrained nodes

without excessive memory penalty.

Memory Usage as a Function of the Primary Memory Parameters

The expression which defines the amount of memory used by the solver as a

function of the eight memory parameters is complex. To assist the user in

finding values yielding increased solver capacity, a Pascal program

memopt.pas is given (in both source and executable form) which takes as

input trial values for the eight variables and computes the number of bytes

required by the remote transputers. Each of the 32 remote processors has 1

Mbyte of memory, so the number returned by memopt, pas should be less than

980,000 bytes. The remaining 24,000 bytes are required by the solver code

itself and other minor working variables.

Reconfiguring the Solver for Larger Problems

The current version of the solver is configured for 10,000 nodes, 10,000

elements, and a maximum of 8 nodes per element for 2 dimensions and 6,000

nodes, 5,000 elements and a maximum of 20 nodes per element for 3

dimensional problems. The remaining parameters are set for structures of

average density and robustness of element connectivity. If the user expects to

solve models with simple elements, the parameters may be altered to nearly

double the solver's capacity.

Note that only an experienced occam programmer should attempt to

reconfigure the solver. The following steps briefly describe the modification

process. Full detail is intentionally omitted to encourage interested users to

contact SPARTA before considering a reconfiguration.
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1. The user must obtain a set of memory parameters which will bound the

largest problems expected and still fit in memory. The memopt, pas program

can be used to assist in the search.

2. The appropriate VAL's in the libraries 2Dvals. tsr and 3Dvals. tsr are

changed to new values.

3. A global recompile is performed. "2Dvals.tsr" and "3Dvals.tsr" affect virtually

every library and SC so that even code unrelated to the solver must be

recompiled.

4. Check memory usage by remote processors to ensure that the memory

required by the code fits on each transputer's 1 Mbyte of RAM.

5. Check memory usage by the host transputer to ensure that enough

workspace is being passed to the solver host routine.

Minimum Problem Size

A minor drawback to the prototype version of XPFEM is that it cannot

solve problems with fewer than about 40 finite element nodes. Small problems

can leave one or more processors without work to do, resulting in a

communications hang. Simple models can always be solved by meshing with

smaller elements to introduce additional nodes.
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APPENDIX C

JACOBI-CONDITIONED CONJUGATE GRADIENT

Notation:

ALGORITHM

{a}
{a'}
[a]
[a']

vector

partial vector

matrix

partial matrix

The Problem:

solve [A]{x} = {b}

Variables:

[A']

{x'}
{b}

[M.inv']

{P}
{Ap'},
{r'},
{s')

the horizontal slice of the stiffness matrix

the displacement vector (divided up among processors)

the force vector (appears only in initialization and is

not used explicitly)

the preconditioning matrix (the inverse of the diagonal

of [A'])

the projection vector (each processor gets a full copy)

working vectors

Memory usage on each processor:

[max.degrees.of.freedom] REAL64 p: -- {p}

[max.degrees.of.freedom.per.processor] REAL32 x,r,s,Ap,M.inv:

{x'}, {r'}, {s'}, {Ap'}, [M.inv']

REAL64 pap, rs, rs.new, a, c:
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Initialization:

1. Extract [M.inv'] from [A']. Note that this is not straight forward, since

[A'] is stored in sparse form.

2. Assume initial guess of {x} = {0}, making {r'} = {b'}. Load the force

vector directly into {r'}

3. Matrix-vector product:

4. Dot product:

5. Assignment:

6. Vector global sum:

7. Scalar global sum:

{s'} = [M.inv']{r'}

m' = {r'}{s'}
{p'} = {s'}

{p'} becomes {p}

rs' becomes rs

(actually a vector outer

product since [M.inv']

is stored as a vector)

Iteration Loop:

8. Matrix-vector product:

9. Dot product:

10. Scalar global sum:

11. Scalar division:

12. Vector scale and add:

13. Vector scale and add:

14. Matrix-vector product:

15. Dot product:

16. Convergence test:

17. Scalar global sum:

18. Scalar division:

19. Scalar assignment:

20. Vector scale and add:

21. Vector concatenation:

{Ap'} = [A']{p}

pAp' = {p}{Ap'} (use only {p'})

pap' becomes pAp

a = m/pAp

{x'} = {x'} + a{p} (use only {p'})

{r'} = {r'}- a{Ap'}

{s'} = [M.inv']{r'} (a vector outer product for

Jacobi conditioning)

rs.new' = {r'}{s'}

is la{Ap'}I small?

rs.new' becomes rs.new, also exchange

results of convergence test

c = m.new/rs

rs = rs.new

{p'} = {s'} + c(p} (use only {p'})

{p'} becomes {p}

22. Terminate on convergence test of Step 16, otherwise go to Step 8.

Communication occurs at steps 10, 17 and 21. The scalar sums at steps

10 and 17 are performed using the tetrodal configuration. The vector sum at
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step 21 is a nearest-neighbor pipeline exchange of only the portions of {p} that

processors need for the [A]{p} multiplication--this shadow of affectivity of {p}

between processors equals the bandwidth of [A].
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APPENDIX D

XPDOS USER'S MANUAL

;KPDOS COMMAND SHELL

The XPDOS shell allows the user to directly manipulate the directory and

file structure on the transputer disks using commands similar to UNIX 1 and MS-

DOS. To execute the XPDOS Shell from the transputer development system

(TDS), first enter the XPFEM top (see Appendix A, XPFEM User's Manual) then

use the arrow keys to position the cursor over the line which reads

"...F comshell -- XPDOS Command Shell," press the F5 key (Get Code),

then the F6 key (Run Code). The screen will clear and the XPDOS header will

be displayed.

The XPDOS shell recognizes two disk drives, noted "a:" and "b:". The

primary, or "root" directory of each disk is denoted by a lone slash ("/"). This

directory can contain up to 255 files and subdirectories. Each subdirectory can

also contain 255 files and subdirectories, and so forth ad in finitum. Files and

subdirectories are assigned names up to 16 characters in length, which may

consist of numbers, letters, dashes, underbars, and other miscellaneous

symbols. The "." character may be included in a filename to provide

compatibility with MS-DOS file extensions.

ROOT

DRIVE DIRECTORY SUBDIRECTORY FILES (+ SUBDIRECTORIES)

materials

("a:/materials")

a: ("a:r) John

('a:/iohn")

example.lib ("a:/materials/examples.lib")

problem.lib ("a:/materials/problem.lib")

example.con ("a:/joh n/example.con")

example.xyz ("a/john/example.xyz")

Rick

1UNIX is a trademark of AT&T

problem.con ("a:/dcldproblem.con")
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("a:/rick") problem.xyz ("a:lrick/problem.xyz")

old problem

('a:/rick/old problem")

old.con ("a:/dck/old problem/old.con")

Any file subdirectory on a disk may be specified by its "full pathname,"

which lists the drive name, directory names, and filename associated with that

file. File and subdirectory names should be separated by slashes. The

diagram above shows a sample directory structure and the full path name of

each entry.

XPDOS also recognizes a "current" or "default" directory. Files and

subdirectories in this directory may be specified by filename alone. The current

directory is automatically displayed at each prompt; when XPDOS boots, the

default path is the "root" directory, so the prompt displayed is "A:/" indicating that

these characters may be omitted from the start of any path name. In the above

diagram, for instance, if the default directory were set to a •/rick, then its two

files could be specified as problem, con and problem, xyz, and old. con

could be specifiedas old problem/old, con. The defaultdirectorycan be

changed with the cd or chdir command.

YYJLD..GABD. 

Most XPDOS commands allow the user of "*" and "?" wildcards in

filenames to match a series of files instead of just one. the "*" wildcard matches

any number of characters inserted at its location; the "?" matches any single

character. Thus, copy a : / john/* b : / joe/* copies all files in directory j ohn

on drive a: to directory joe on drive b:, del Problem. * deletes all files relating

tO problem, and rename *.dat *.old renames all files ending in . dat SO

that they end in . old instead. The command del * which deletes all files in a

directory should obviously be used with great care.

LISTING DIRECTORIES
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The di: (or ms for those who prefer Unix) will display a list of all files in a

single directory. A directory pathname may be specified, or if it is omitted, the

current directory will be displayed. The filesize in bytes is displayed next to

each filename. A "*" to the left indicates that this is a subdirectory rather than a

file. Example:

a:/>dir rick a:/>dir

Directory: a:/rick Directory;

problem.con 32768 * materials

problem.xyz 15000 * john

• old problem 4096 "rick

a:/

4096

4096

4096

Total of 51864 blocks in 3 files. Total of 12288 blocks in 3 files.

DELETING FILES

The del (or rm) command may be used to delete files. The file or files

specified are permanently removed from the disk (there is no way to "undelete"

a file). Examples:

a:/john> del example.*

a:/john> del b:/joe/*.*

COPYINCa FILES

The copy (or cp) command will duplicate a file or files. The copy

command looks like this:

"copy source files destination files"

Where the "source files" are the original files and "destination files" are the

names of the new files.

Wildcards and full or partial path names may be used with the copy command.

Examples:

a:/> copy x.dat y.txt

a:/> x:/joe/*.*

(copies the file "x.dat" to "y.txt" in the current directory)

(copies all files in "b:/joe" to the current directory)
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a:/> copy *.txt ".doc (copiesall filesin thecurrentdirectorywiththe extension*.txt"

intofilesw/extension".doc')

RENAMING AND MOVING FILES AND SUBDIRECTORIES

The rename (or mv) command will rename a file or subdirectory, and may

even move it to a different directory. It is specified as "rename old name new

name", and wildcards may be used for either old name or new name. Note that

if a directory path is specified in new name which is different from that of old

name, the file will be moved to the new directory as part of the renaming

process. Directories themselves may also be renamed, and if they are moved,

then all of the files inside of them move too. For example, if the command mv

a :/rick/old problem a :/ isexecuted, then the subdirectoryold problem

will be entered in the root directory alongside rick; thus, its full path name

changes from a:/rick/old problem to a:/old problem, and its file

old. con is now specified a :/old problem/old, con. Other examples:

a:/john> rename example.* useful.* (renames all "example: file

to the name "useful",

preserving the file extensions)

a:/john> rename */ (moves all files from the current

to the root directory)

Note that the rename command may never be used to create circular path

names; for instance, if old problem is a subdirectory of a :/rick, then the

command my a:/rick a:/rick/old problem will be rejected.

CREATING DIRECTORIES

The md (or mkdir) command will create a new subdirectory, which is then

capable of holding other subdirectories or files. If a full pathname is specified,

then XPDOS will create a directory which has that full pathname; otherwise it

will create a subdirectory of the current directory. Examples:
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a:/john> md stuff

aJjohn> md b:/joe/other

(creates "a:/john/stufl')

(creates "b:/joe/other")

REMOVING DIRECTORIES

The rd (or rmdir) command will remove (delete) an existing

subdirectory. Note that a subdirectory must be completely empty in order to be

removed; if it has any files or subdirectore is of its won, XPDOS will reject the rd

command. The del, rd, and rename commands may be used to eliminate the

files from a subdirectory prior to deletion. Examples:

aJdck> del old problem/*

a:/rick> rd old problem

a:/rick> del*

aJrick> cd/

aJ> rd rick

Removes all files in "rick" and "rick/old problem,"and then

removes the directories themselves.

CHANGING DEFAULT DIRECTORY

The cd (or chdir) command will change to a different default directory

and/or disk. the XPDOS prompt will change to match. If the full pathname is

specified, that path will be used exactly; otherwise it will be computed based on

the current default directory. Note also that the dot.dot C..") specifier can be

used to specify the current directory's "parent". Examples:

a:/> cd rick

aJrick> cd old problem

a:/rick/old problem> cd ..

a:/dck> cd ..

aJ> cd bJjoelstuff

bJjoe/stuff> cd a:/

aJ>
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CHANGING DEFAULT DISK

The default disk may be changed by simply typing the name of the disk

"a:" or "b:") that you wish to change to. Examples:

a:/rick> b:

b:/> a:

aJrick >

DISPLAYING DISK FREE SPACE

The free command will display information about current disk space

usage.

DISPLAYING A FILE

The type command will display a file on the screen. During the display,

the SPACE bar can be used to pause and restart the display. To abort the

display, press any other key. Example:

a:/> type rick/problem.con

QBTAININ(_ HELp

The help command will list the XPDOS commands available.

TRANSFERRING FILES BETWEEN XPDOS AND MS-DOS

The dosget, dosput, dosgetbinary and dosputbinary commands

exists to transfer files between the transputer disks and the local PC/AT hard

drive. The standard command (dosget/dosput) will convert between XPDOS

and MS-DOS ASCII formats for text files; the binary versions (dosget

binary/dosput binary) will duplicate binary and executable files precisely. All

four commands work like the copy command, except that the source and

destination files reside on different machines.
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The dosget commands load a file from MSDOX to XPDOS; the "binary"

extension specifies exact duplication rather than ASCII conversion. The

command is "dosget <MS-DOS file> <XPDOS file>."

a:/> dosget c:/textfile.txt mytext.txt (the MSDOX file "c:/textfile.txt" is loaded,

converted, and placed on the transputer disk in

the current directory as "mytext.txt")

a:/> dosgetbinary file.bin a:/rick/problem.xxx (the MS-DOS file "lile.bin" from the current

MS-DOS default drive and directory is loaded

into a:/ricldproblem.xxx with no ASCII

conversion)

The dosput commands write a file from XPDOS to MS-DOS; the "binary"

extension specifies exact duplication rather than ASCII conversion. The

command is dosput <XP file> <MS file>.

a:/> dosput data.txt c:/data.txt

a:/> dosputbinary problem.xxx file.bin

IMPORTANT: No wildcards may be used for dosget and dosput commands.

Also, the source and destination filenames must be completely specified (there

is no "default filename"), although the default disk and directory are both

recognized. The following commands are incorrect:

a:/> dosput data.dat a:

a:/> dosget textfile.txt

(correct: dosput data.dat a:data.dat)

(correct: dosget textfile.txt textfile.txt)

EXECUTING MS-DOS COMMANDS

The dos command will allow the execution of MS-DOS commands from

within the XPDOS shell. This is sometimes useful during file transfers (to obtain
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directories and prepare files for transfer). When the dos command is entered,

you will immediately be returned to MS-DOS. Type your MS-DOS commands,

and when you are finished, type exit to return to XPDOS. Note that some

larger programs will cause XPDOS to be overwritten in memory, in which case

the exit command will cause the TDS to reboot w/the message "Transputer

Error Flag Set" rather than returning to XPDOS. In this case, simply reload

XPDOS as if starting from power up; no harm is caused by this procedure.

EXITING FROM XPDOS

To exit the XPDOS shell, simply type the command exit; you will be

returned to the TDS.
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APPENDIX E

XPDOS DISK LIBRARY ROUTINES AND ERROR CODES

The following text describes the procedures available in XPDOS, the

transputer disk operating system developed for the network disks in XPFEM.

This disk operating system is a stand-alone, separately compiled occam library

module which can be linked to by user-developed occam programs. Programs

which call XPDOS must include the statement #USE "disk. tsr", and be

written in the c:\fesl2\disk directory so that the linker finds the XPDOS

library.

SYSTEM ROUTINES

Variables

bioslink

disknum

host transputer link (0-3) which is connected to file server; this is

declared as a VAL in disks.tsr and can thus be passed as a

constant when using this library

the disk to be initialized (0 or 1)

status variable to receive return status from routine.

(1 = everything ok, negative = an error occurred)

Procedures

PROC BoostDisks (VAL INT bioslink)

Boots the file sewer if necessary (has no effect if already booted)

PROC Initialize (VAL INT bioslink, disknum, INT status)

Initializes the file st_cture on a new disk drive.

WARNING/// This routine will erase ALL data on the disk, and thus

should not be called except the very first time a disk is used. If it is

desired to actually initialize the disk drive, the recommended procedure
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is to use the "initialize" command from the XPDOS Shell, rather than

invoking this procedure from a program.

DIRECTORY ACCESS ROUTINES

The following routines are used to manipulate the file and directory

structure of an XPDOS dis. Each routine corresponds to an XPDOS Shell

command of the same name, and is in fact called by the Shell in order to

perform its function. These routines may be included in user programs in order

to perform directory and file operations.

PROC MakeDirectory (VAL INT bioslink, VAL []BYTE pathname,

INT status)

Attempts to create a new directory (called by md/mkdir command).

pathname = the full or partial path of the directory to be created.

No wildcards are permitted for this command.

PROC RemoveDirectory (VAL INT bioslink, VAL [] BYTE pathname,

INT status)

Attempts to remove a directory (Called by rd]rmdir command).

pathname = full or partial path of the directory to be removed.

No wildcards are permitted for this command.

PROC

dirpath =

being listed.

dirsize =

directory. The maximum number of entries is 255.

dir.buffer = BYTE buffer to receive the directory entries.

ListDirectory (VAL INT bioslink, VAL []BYTE pathname,

[]BYTE dirpath, INT dirsize,

[dirmax*dlistlen]BYTE dir.buffer, INT status)

Lists the directory specified by pathname into a buffer which can then be

examined by the user routine. Variables are as follows:

pathname = full or partial path of directory or files to be listed.

Wildcards of any kind are allowed here (* and ?).

BYTE buffer to receive the full pathname of the directory

The maximum length is 80 characters.

INT variable to receive the number of entries in this

This

buffer must be of exactly length dirmax*dlistlen, each of which is
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PROC

declared as a constant in this library.

buffer and can be read as follows:

[dirmax*dlistlen]BYTE dir.buffer

[dlistlen]BYTE list.entry

[filenamemax]BYTE list.filename RETYPES [

list.entry FROM 7 FOR filenamemax] :

INT list.size RETYPES [list.entry FROM 0 FOR 4] :

INT list.dirflag RETYPES [list.entry FROM 4 FOR 4]

SEQ index = 0 FOR dirsize

SEQ

list.entry

... Examine

The entries are packed into the

:= [dir.buffer FROM (index*dlistlen) FOR

dlistlen]:

directory entry (list.filename, list.size,

list.dirflag)

list.filename

list.size

list.dirflag

= the name of the file

= the size in bytes of the file

= flag: 1--subdirectory, 0=file

ChangeDirectory (VAL INT bioslink, VAL [] BYTE

pathname, INT disknum, [] BYTE returnpath, INT status)

Changes the current working directory (called by cd/chdir). After the

working directory is changed, the new disk and path is returned.

pathname = BYTE Array containing path to be change to. If pathname

is empty, ChangeDirectory simply returns the current path.

disknum = INT variable to receive the disk number (0,1) of the new

default path.

returnpath = BYTE array to receive the new default path.

PROC MoveFile (VAL INT bioslink, VAL [] BYTE sourcepath,

destpath, INT status)

Renames files & subdirectories and/or moves them from one directory to

another. (Called by mv/rename)

sourcepath = pathname existing files to be moved or renamed.

Wildcards of all kinds are permitted.
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destpath

permitted.

= new pathname for files, Wildcards of all kinds are

PROC CopyFile (VAL INT bioslink, VAL []BYTE sourcepath,

destpath, INT status)

Copies files from one place to another. (called by cp/copy)

sourcepath = pathname of existing file(s). Wildcards are

permitted.

destpath = pathname to copy to. Wildcards are permitted.

PROC DeleteFile (VAL INT bioslink, VAL []BYPE pathname, INT

status)

Deletes the file or files specified (Called by rm/del)

pathname = the name of the file(s) to be deleted. Wildcards are

permitted here.

PROC

disknum

free.total

free.avail

blocks)

FreeSpace (VAL INT bioslink, disknum, INT freetotal,

free.avail, free.reserved, free.used, status)

Returns free space information for the disk specified. All information is

provided in terms of 4096 byte blocks.

= the disk # (0 or 1) of the disk to be examined.

= the total number of blocks existing on the disk

= the number of blocks not currently in use (i.e. free

free. reserved = the number of blocks reserved for use by the file

system

free, used = the number of blocks already allocated to files

PROC ErrorMessage (VAL INT status)

Displays the error message that corresponds to a particular status code.

If a file routine returns a negative status, that status can be passed to this

routine to display the appropriate error message on the screen. Refer to

the end of this document for a list of error messages.
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FILE OPENING

Variables

bioslink

unit

filename

status

reclen

Procedures

host transputer link (0-3) connected to fileserver

variable to receive the unit number assigned to the file.

This variable must then be passed as unit to all subsequent

calls involving the file. XPDOS currently allows up to 4 files

to be open at once.

text (BYTE) string containing the name of the file to be

opened, terminated either by a null (zero) byte or the

physical end of the byte array.

variable to receive the return status of the open routine.

(1 = everything went OK, negative = error code)

(direct access only). INT value specifying the number of

bytes in a fixed length record.

PROC OpenFileBinaryRead (VAL INT bioslink, INT unit,

VAL []BYTE filename, INT status)

Opens a file for readonly access as a stream of bytes (bina_/ASCII)

PROC OpenFileBinaryWrite (VAL INT bioslin, INT unit,

VAL [] BYTE filename, INT status)

Creates a new file (overwrites any previously existing version) for write

only access as a stream of bytes (bina_/ASCII)

PROC OpenFileBinaryAppend (VAL INT bioslink, INT unit,

VAL []BYTE filename, INT status)

Like OpenFileBinaryAppend, exceptthatifthefile already exists, it will

be appended to rather than overwri,en.
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PROC OpenFileDirectReadWrite (VAL INT bioslink, INT unit,

VAL []BYTE filename, VAL INT reclen, INT status)

Opens a file (cre_es it if it does not exist) for random read/write access

with a fixed reco_ length of reclen

PROC OpenFileDirectReadonly (VAL INT bioslink, INT unit,

VAL []BYTE filename, VAL INT reclen, INT status)

Like OpenFileDi_ctReadWrite, except that _co_s may only be read;

never written.

GENERAL ROUTINES

The following routines can be used for all types of files -- both binary and

direct access.

PROC FlushBuffer (VAL INT bioslink, unit, INT status)

Flushes the file's i/o buffer to disk; any data currently being held in

memory is now written out. This routine can be used to make sure that

information from previous Put/FileWrite calls has actually been output

to the disk drive. This routine is called automatically by CloseFile.

PROC EndoOfFile (VAL INT bioslink, unit, BOOL eof)

Checks to see if the end of file marker has been reached for this file. If

the end of the file has been reached, eof will return TRUE; otherwise, it

will return FALSE.

PROC CurrentPosition (VAL INT bioslink, unit, INT curpos)

Returns the current position of a readonly or direct access file. For direct

access files, curpos returns the next record number; for binary files,

cucpos returns the byte offset from the beginning of the file. The first

byte/record in a file is #0.

PROC CloseFile (VAL INT bioslink, unit, INT status)

Closes a file, flushes it i/o buffer, and frees its unit number for use by

other files. Once CloseFile is called, no further i/o calls should be



112

addressed to that unit # unless a new OpenFile

CloseFile terminates all file activity for that file.

DIRECT ACCESS

call is issued.

Variables Common to, and Visible from, all Direct Access Routines

record array of length reclen, containing the fixed-length record to

be written or to receive the one about to be read.

recnum the logical record number to be read or written. The first

record in a file is record O. If a record is written beyond the

current end of file marker, the file is extended so as to

contain that record. If a record is read beyond the current

end of file marker, an error is returned.

Procedures

PROC GetRec (VAL INT bioslink, unit, [] BYTE

VAL INT recnum, INT status)

Reads one random access record

record,

PROC PutRec (VAL INT bioslink, unit, VAL []BYTE record,

VAL INT recnum, INT status)

Writes one random access record

BINARY ACCESS

PROC Get Byte (VAL INT bioslink, unit, BYTE item, status)

PROC PutByte (VAL INT bioslink, unit, VAL BYTE item, status)

Routines to read or write a single byte to the binary file.item - the byte to

be read or wntten.

PROC Rewind (VAL INT bioslink, unit INT status)

Rewinds a read-only file. The next byte read will be the very first byte in

the file. This has the same effect as closing the file and reopening it.
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PROC Position (VAL INT bioslink, unit, filepos, INT status)

Positions a read-only file to the desired location

filepos = the byte # in the file to position to. The very first byte in a

file is #0, so a position to byte 0 produces the same effect

as the Rewind routine.

PROC BackSpace (VAL INT bioslink, unit, INT status)

Positions a readonly file to one less than the current position. This

essentially has the effect of "unreading" the last byte read; thus, the next

byte read will be the same as the last type read. Multiple BackSpaces

can be used to produce multiple "unreads" ad infinitum. BackSpacing

past the beginning fo a file produces an error code.

PROC FileWrite (VAL INT bioslink, unit, VAL [] BYTE line,

INT status)

PROC FileWriteln (VAL INT bioslink, unit VAL [] BYTE line,

INT status)

Procedures to write a string of bytes; has the same effect as a series of

calls to PutByte. FileWrite simply writes the string passed to it, while

FileWriteln will append a carriage return (ASCII 13).

line - BYTE array to be written. Every byte in line will be stored to the

file; the number of bytes written is thus equal to SIZE line.

PROC FileWriteINT (VAL INT bioslink, unit, number, fieldsize,

INT status)

Writes an integer value in ASCII form_ into the file.

number = INT number to be wd_en

fieldsize = # of ASCII bytes to output. If fieldsize is greater than or

equal to the number of bytes necessary for numeric output,

spaces will be added to pad out the field. If fieldsize is

less than or equal to the number of bytes needed, or if

fieldsize is 0, then the number will be output followed by

a space.
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PROC FileWriteREAL32 (VAL INT bioslink, unit,

VAL REAL32 number, VAL INT leftfield,

rightfield, INT status)

PROC

PROC

FileWriteREAL 64 (VAL INT bioslink, unit,

VAL REAL64 number, VAL INT leftfield, rightfield,

INT status)

Procedures to write a single or double precision real in ASCII format to

the disk. The string written is guaranteed to begin and end with a blank

space character and to have no internal blank spaces.

number = the REAL32 or REAL64 number to be written

leftfield = field size to the left of the decimal point

rightfield = field size to the right of the decimal point (as noted above,

the string will begin and end with a space)

FileRead (VAL INT bioslink, unit, []BYTE line,

VAL INT lentoget, INT lenwegot, status)

PROC FileReadBlock (VAL INT bioslink, unit, []BYTE line, VAL

INT lentoget, INT lenwegot, status)

Procedures to read an array of bytes from the disk. Much like a series of

calls to GetByte. FileRead stops short if an end-of-line character

(carriage return) is encountered; FileReadBlock reads carriage returns

as if they were regular bytes.

line = BYTE array to receive the bytes read. Must be at least as

long as lentoget.

lentoget = number of bytes to read

lenwegot = INT variable to receive the number of bytes actually read.

Normally will be equal to lenwegot, but may be less if an

end of line or end of file is encountered. In any event, this

contains the number of bytes of line which are significant.

PROC FileReadNewLine (VAL INT bioslink, unit INT status)

Can be used to position the file to the beginning of the next line of text

(i.e. after the next end-of-line marker)
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PROC FileReadIn (VAL INT bioslink, unit, []BYTE line, INT

status)

Much more useful than FileRead, this routine reads a series of bytes

which is terminated when an end of line marker (carriage return) is

encountered. On return, line will contain the bytes read followed by null

bytes. The INT function StrLength has been provided in this library to

determine the significant length of the returned string. Example:

FileReadIn (bioslin, unit, readme, status)

len := StrLength (readme)

write ("String: ")

writeln ([readme FROM 0 FOR len])

PROC FileReadINT (VAL INT bioslink, unit, INT number, status)

Attempts to read an integer number (stored in ASCII format) from the file.

Any spaces and end-of-lines between the current position and the

number will be ignored, but any non-numeric or REAL data will produce

an error status. This routine will leave the file positioned at the first byte

following the integer data read.

PROC FileReadREAL32

PROC FileReadREAL64

(VAL INT bioslink, unit, REAL32 number,

INT status)

(VAL INT bioslink, unit, REAL64 number,

INT status)

Attempts to read a single or double precision real (stored in ASCII

format). Any spaces and end-of-lines between the current position and

the number will be ignored, but any non-numeric or INT data will produce

an error status. These routines will leave the file positioned at the first

byte following the real data read.

Packed Formats

The following routines (also compatible with binary files) implement

*packed* numeric output formats, as opposed to the ASCII formats of the

previous routines. Whereas ASCII formats simply write out numbers in text

format (e.g. "1.08E+07"), and then convert them back character by character

during reads, packed formats write the information exactly as the program
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stores it in memory. These formats are much faster and much more compact

than ASCII formats, but are not compatible with ASCII read and write routines

(they also produce files that are unreadable by human eyes, unlike their ASCII

counterparts). Because packed formats ignore end-of-line markers, such

formats should not be used in conjunction with any of the FileRead or

FileWrite routines, except for FileReadBlock and FileWrite, which can be

safely used to read and write fixed length strings.

PROC PutINT

PROC PutREAL32

PROC PutREAL64

(VAL INT bioslink, unit, number, INT status)

(VAL INT bioslink, unit, VAL INT REAL32

number, INT status)

(VAL INT bioslink, unit, VAL INT REAL64

number, INT status)

Writes the specified value in packed format to the file. INT and REAL32

values require 4 bytes, while REAL64 values require 8 bytes.

PROC GetINT

PROC GetREAL32

PROC GetREAL64

(VAL INT bioslink, unit, INT number, status)

(VAL INT bioslink, unit, REAL32 number,

INT status)

(VAL INT bioslink, unit, REAL64 number,

INT status)

Reads the specified type number in packed format from the file. Note that

the file must be positioned to the exact spot at which a number in the

specified format was previously written, or an incorrect value will be

returned. Note also that though INT and REAL32's each require 4 bytes,

the formats are NOT compatible, and cannot be used interchangeably. A

number written as REAL32 must be read as REAL32.



117

STATUS CODES

Positive Values

1 = Operation successful.

Negative Values

-1 = Resource not available.

The resource which you have requested (probably disk space) has been

exhausted. Check disk free space and delete some files. If disk already

shows free space, then the inode table has been exhausted; again, the

solution is to delete some files.

-2 = File not found.

The file which you have attempted to access does not exist, and the

routine which you have called cannot proceed without an already

existing file. Check your filename and path to make sure they are correct.

You may be trying to access a file which resides in another subdirectory,

in which case you must either change directory to that subdirectory, or

use the full pathname (from root) of the file.

-3 = Invalid path.

You have specified an invalid path. Note that in a long path such as

/usr/brian/stuff, every entry except the last one MUST exist already

("MakeDirecgory" cannot be used to create a whole tree of

subdirectories with a single command). Only the last entry (i.e. stuff)

can be non-existent, depending on the nature of the command. Check to

make sure that your pathname has been spelled correctly, and that each

entry corresponds to an existing subdirectory.

-4 = Directory full.

You have attempted to create a file or subdirectory in a directory which is

already full. Each directory can contain no more than 255 entries, so the

only solution at this point is to delete some files or move them to another

directory. The best advice is to divide the current directory into a series of

subdirectories anyway.
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-5 = Not a directory.

You have attempted to perform a directory operation (make, remove,

change) on a file. These functions can ONLY be used to modify directory

structures.

-6 = Pathname overflow.

XPDOS has attempted to return a pathname which is longer than the

maximum pathname allowed (80 chars). The solution is to keep

subdirectory trees to a reasonable depth and not go so hogwild that you

end up with 85 character pathnames.

-7 = File allocation overflow.

A file has attempted to expand beyond the maximum number of blocks

which XPDOS is able to allocate to a single file (slightly more than 8

Megabytes in the current implementation). No more information can be

added to this file, although a second file could be opened and

information added to it where the first left off.

-8 = Cannot create: already exists.

You have attempted to create a directory with a pathname that is already

in use (i.e. the directory already exists or a file exists with the same name

you had in mine for the directory). Rename the existing occupant of the

name, or create your directory using a different name.

-9 = No such' file(s).

A wildcard file operation has failed to match any files. In other words, no

files matching your wildcard were found, and no operations were

performed.

-10 = Cannot remove: directory not empty.

You have attempted to remove a subdirectory which still contains entries

(subdirectories or files of any kind, empty or not). Only directories which

are completely empty (i.e. no entries except for "." and "..") can be

removed.

-11 = Cannot remove current directory.

You have attempted to remove the directory which you are logged to (i.e.

your current default directory). Use ChangeDirectory to move to the

parent directory and try the operation again.
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-12 = Cannot remove root directory.

You have attempted to remove the root ("/") directory. This directory is a

permanent part of the file structure and cannot be removed at anytime for

any reason (after all, why would you want to?).

-13 = Cannot OPEN a directory file.

You have attempted to open a subdirectory for file access. The only way

to modify a directory "file" is through the directory manipulation

commands (MakeDirectory, RemoveDirectory, MoveFile,

ListDirectory). Fileoperations likeOpenFile and CloseFile are

never allowed.

-14 = File is already open.

You have attempted to open a file which is already open. To reopen a

file using a different access method you must close it first.

-15 = Record length does not match record size.

You have attempted to perform a fixed length record operation (GetRec

or PutRec) using a record whose SIZE does not match the record length

(reclen) specified at the time you executed the OpenFile command.

Alter your array dimensions so that they conform to the record size, or

pass an appropriately sized substring of a larger array.

-16 = Read past end of file.

Your read operation has requested more information than remains in the

file, and is thus unable to proceed. No more information can be read

from this unit # unless the file marker is repositioned using Rewind,

Position, Backspace, or GetRec/PutRec, or until the file is Closed and

the reopened.

-17 = Block not in file.

Your GetRec command has attempted to access a record which has a

higher id number than any which has previously been written to the file

(in other words, you have attempted to read a record which does not yet

exist). A record should not be read form until it has been written to at least

once.

-18 = Cannot read from writeonly file.

You have attempted to perform a read operation on a file which has been

opened for write-only access. To read from this file, you must close it and

then reopen it for read access.
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-19 = Cannot write to readonly file.

You have attempted to write information to a file which has been opened

for readonly access. To write to the file, you must close it and then

reopen it in an access mode which permits writing.

-20 = File is not open.

You have attempted to perform a file operation (Read, Write, Get, Put) on

a unit # which has not yet been opened. You must use an OpenFile

command to open a file and obtain a unit # before you can perform i/o

operations on it.

-21 - Not a binary file.

You have attempted to perform a binary i/o operation (FileRead,

FileWrite, GetByte, PutByte, etc.) on a file which is opened for direct

access.

-22 = Not a direct access file.

You have attempted to perform a direct i/o operation (GetRec, Put Rec)

on a file which is opened for binary access.

-23 = Buffer too small.

A FileRead operation has retrieved more information than will fit into

the buffer which you have provided. You should alter your array

dimensions to create a larger buffer, or check the file to be sure that it

was really intended to be read in this manner (for example, a

FileReadIn command performed on a file which contains no carriage

returns, will simply try to return the whole files as one line--probably not

what you had intended). Possibly a different form of access (such as

GetByte) is called for.

-24 = Not a file.

You have attempted to perform a file operation on something which is not

a file.

-25 ---Target file already exists.

A MoveFile operation has attempted to change a file's name such that it

would be identical with the name of another already existing file. Since

XPDOS does not allow identical filenames in the same directory, the

operation has failed. Alter your MoveFile operation so that it will give

each file a unique name.
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-26 = Cannot move root directory.

You have attempted to move or rename the root directory. The root

directory cannot be moved, removed, renamed, replaced, deleted,

folded, spindled, mangled, or mutilated in any way. It is one of those

constants in life which stands apart from time and space as we know it.

-27 = Missing parameter.

You have attempted to execute an XPDOS shell command without

supplying one or more required parameters (mkdir, for instance,

requires that you supply the name of the directory to be created). Check

your command's syntax and supply the missing parameter.

-28 = Cannot copy/move file to itself.

You have attempted to copy or move a file to the exact same location and

filename which it already has. Such an operation is not possible, and

would do nothing useful anyway. Change your copy or move command

so that it puts the file somewhere else or with a different name.

-29 = Cannot move parent to child.

You have attempted to move a directory into its own subdirectory (or

some subdirectory of which it is the parent, grandparent, etc.). The

directory structure must always be a TREE; never a circle, tube, cylinder,

or other aberration. No directory operation which would result in the

creation of a circular subdirectory structure, or in the severance of part of

the structure from the rest of the tree is allowed.

-30 = Cannot move logged directory structure.

You have requested a HoveFile operation which would result in your

current default directory being moved. As this is not allowed, you must

first use ChangeDirectory to move to a different directory (such as the

root) and then try the operation again.

-31 = Cannot move between disks.

You have attempted to move or rename a file so that it would end up on a

different disk from where it started. Only the CopyFile command can

transfer information between disks, so it is suggested that you use that.

-32 = Illegal unit number.

You have attempted to perform an operation using an illegal unit number.

You should use an OpenFile command to open a file and get a legal

unit number before you attempt to perform any i/o operations.
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-33 = No unit #'s available.

You have attempted to open a file when no unit #'s are available on

which to open it. This means that 4 files are already opened, and you

must close one of them before you can open any more.

-34 = Device does not exist.

You have specified a disk number which does not correspond to a disk

existing in your system. Check to see how many disks you have and try

again.

-35 = Backspace past top of file.

You have called the BackSpace procedure when no information has yet

been read from the file (or all information has already been "unread").

Backspace cannot be used to move beyond the top of a file.

-36 = Bad data on integer read.

A FileReadINT operation has encountered non-blank, non-numeric

data before reaching any useful integer information. Check your data file

to be sure that it has been written in the proper format.

-37 = Integer conversion failure.

A FileReadINT operation has encountered numeric data which it is

unable to convert, probably because the number itself is too large to fit

into a 32 bit integer variable. Check your file to make sure that the data is

not all crammed together with no spaces in the middle or something like

that.

-38 = Conversion buffer overflow.

A FileReadINT or FileReadREAL operation has encountered numeric

data so lengthy that it will not fit into the internal conversion buffer. This

probably means either that your data has been run together without

spaces, is so large that it wouldn't fit into a variable anyway, or has more

significant figures then even a REAL64 could represent.

-39 = Found REAL data on an INT read.

A FileReadINT operation has encountered numeric data with a decimal

point (".") in the middle of it. This probably means that you are reading

your file in the wrong order, or wrote REAL data where INT data

belonged. The number was read anyway (& rounded off to INT), but any

further results from this file are dubious.
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-40 = Found INT data on a REAL read.

A FileReadREAL operation has encountered numeric data with no

decimal point ("."). This probably means that you are reading your file in

the wrong order, or wrote INT data where REAL data belonged. The

number was read anyway (& converted to REAL), but any further results

from this file are dubious.

-41 = Error opening host file.

Your dosget or dosput MS-DOS transfer operation has failed to open

the file on the host system. Either the file does not exist in the case of a

dosget, or there is something wrong with the pathname. Examine your

host directory structure to see what the problem is.

-42 = Failed to execute host command.

XPDOS has attempted to execute a command on the host system and

has for some reason failed.

-43 = Packed read failed.

Your packed read operation (GetINT, GetREAL32, GetREAL64) has

failed because there are not enough bytes left in the file to hold the

specified variable. INT & REAL32 each occupy 4 bytes, while REAL64

occupies 8. This error probably means that something is horribly wrong

with your file format, or that you are reading it back in the wrong order.

-44 = No wildcards allowed for this command.

You have specified wildcards ("'" or "?") for a command which does not

allow them. Commands which allow wildcards are ListDirectory,

MoveFile, CopyFile, and DeleteFile. Commands which never allow

wildcards are MakeDirectory, RemoveDirectory, ChangeDirectory,

and OpenFile.
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APPENDIX F

XPGRAPHICS USER'S MANUAL

The following text describes XPGRAPHICS, a library of graphics

primitives. XPGRAPHICS was developed as software support for the INMOS

B408/B409 graphics hardware system included in XPFEM. The library is a

stand-alone module which can be linked to applications by including

#USE "graphics. tar" in the occam code.

One variable, link, occurs in each XPGRAPHICS routine. Its definition for

all routines is given below:

link = integer variable which defines the graphics channel number

between the TDS and the graphics disk server (B408).

0 <= link <= 3

SYSTEM ROUTINES

PROC InitServer.XL (VAL INT link)

Initializes the graphics server.

PROC Terminate.XL (VAL INT link)

Terminates the graphics server.

COLOR ROUTINES

PROC SetBkColor.XL (VAL INT link, color)

Sets the background color.

color = background color value. Default is 0 (BLACK).

0 <= color <= 255
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PROC

PROC

PROC

Set FgColor.XL (VAL INT link, color)

Sets the foreground color.

Input: color = foreground color value. Default is 15 (WHITE).

0 <= color <= 255

SetColor.XL (VAL INT link, color.value, red, green,

blue)

Defines a new color value in the color look up table.

Input: color.value = new color value identification number.

0 <= color.value <= 255

red = value of red color.

0 <= red <= 63

green = value of green color.

0 <= green <= 63

blue = value of blue color.

0 <= blue <= 63

SelectColorTable.XL (VAL INT link, table.number)

Selects a color table for drawing.

Input: table.number = number of desired color table. Default = 1.

0 <= table.number <= 2

PROC GetPixelColor.XL (VAL INT link, x, y,

Returns the color value of an assigned pixel.

Input: x, y = coordinates of desired pixel.

Output: color

error

INT color, error)

(Monitor and frequency dependent.)

= color value assigned to pixel at (x,y)

= error code.

PROC GetBkColor.XL (VAL INT link, INT color,

Returns the background color number.

Output: color = current background color value.

error = error code.

error)
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PROC GetFgColor.XL (VAL INT link, INT color,

Returns the foreground color number.

Output: color = current foreground color value.

error = error code.

error)

PROC SetMaskReg.XL (VAL INT link, mask)

Sets the mask register on the IMS G170.

Input: mask = pixel mask register. The pixel mask register in the IMS

G170 is bitwise ANDed with the address register to give

a masked address. This masking can be used to alter

displayed colors without altering the video memory or

the look-up table contents.

Point, Line, Polygon and Curve Routines

PROC SetDash. XL (VAL INT

Sets dash pattern.

Input:dash.pattern =

link, VAL INTI6 dash.pattern)

desired dash pattern number.

Default is 0 C__).

2=

..,. ....

4=

.. ....

6=

7_ .. ..

PROC Line.XL (VAL INT link, x0, y0, xl, yl)

Draws a line given two endpoints.

Input: ×o, yO = coordinates of the beginning point.

×1, yl = coordinates of the endpoint.
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PROC LineRel.XL (VAL INT link, del.x, del.y)

Draws a line relative to the current cursor position.

Input: del. x, del. y = drawing increments in the x and y directions.

PROC LineTo.XL (VAL INT link, x2, y2)

Draws a line from the current cursor position to an specified endpoint.

Input: x2, y2 - coordinates of the endpoint.

PROC LineFrom. XL (VAL INT lin, x2, y2)

Draws a line from the current cursor position to a specified endpoint

without changing the current cursor position.

Input: x2, 2'2 = coordinates of the endpoint.

PROC Point.XL (VAL INT link, x, y)

Plots a point at a specific position.

Input: x, y = coordinates of the desired position.

PROC Circle.XL (VAL INT link, xc, yc, rad)

Draws a circle determined by the center and radius.

Inputs: xc, yc = coordinates of the circle of the circle.

rad = radius of the circle.

PROC Arc. XL (VAL INT link, xl, yl, x2, y2, x3, y3)

Draws an arc of a circle between the three points specified.

Input: xl, yl = coordinates of the beginning point of the arc.

x2, y2 = coordinates of a point which lies on the arc.

x3, y3 = coordinates of the endpoint of the arc.

PROC Rect.XL (VAL INT link, xl, yl, x2, y2)

Draws a rectangle using the top left corner and bottom right corner.

Input: xl, yl = coordinates of the top left corner of the rectangle.

x2, y2 = coordinates of the bottom right corner of the rectangle.
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PROC Polygon.XL (VAL INT link, number.sides,

VAL [] [] INT polygon)

Draws a polygon given a specified number of sides and the vertices.

Input: number, sides = number of sides of the polygon.

[] [ ] polygon = coordinates of the vertices of the polygon.

PROC PolygonFill.XL (VAL INT link, number.sides,

VAL [] [] INT polygon, VAL INT color )

Fills a polygon with a specified color. The polygon is specified by

number of sides and vertices.

Input: number, sides = number of sides of polygon.

[] [] polygon = coordinates of the vertices of the polygon.

color = define desired fill color.

PROC FillPolygon.XL (VAL INT link, x, y, color)

Fills a polygon with a specified color. The polygon is specified by an

interior point.

Input: x, y = coordinates of a point inside the polygon.

color = fill color.

PROC QuickFill.XL (VAL INT link, x, y, color)

Fills a polygon that has simple convex shape. The polygon is specified

by an interior point.

Input: x, y = coordinates of a point inside the polygon.

color = fill color.

PROC MoveDraw. XL (VAL INT link, x, y)

Moves the cursor to a specified position.

Input: x, y = the coordinates of the desired cursor position.

PROC MoveDrawRel.XL (VAL INT link, del.x, del.y)

Moves the cursor position relative to its current position.

Input: del. x, del. y = incremental distances from current position.
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PROC SetDrawMode.XL (VAL INT link, mode)

Sets drawing mode.

Input: mode - define desired drawing mode. Default = 0 (normal).

1 = and mode

2 = or mode

3 = xor mode

4 = foreground mode

PROC GetDrawingCursor.XL (VAL INT link, INT x, y)

Returns the cursor position.

Output: x, y = the coordinates of the current cursor position.

SCREEN and WINDOW ROUTINES

PROC ClearSelectedScreen.XL (VAL INT link, color, INT

Clears the currently selected screen with a specified color.

Inputs: color = screen color. Default = 0 (BLACK).

0 <= color <= 255

Output: error = error code.

error)

PROC

PROC

Output: error

ClearScreen.XL (VAL INT link, screen.number, color,

INT error)

Clears a screen using a specified color.

Input: screen, number = screen number to be cleared. Default =0.

0 <= screen.number <= 1

color - screen color,

default = 0 (BLACK).

0 <= color <= 255

= error code.

SelectScreen.XL (VAL INT link, screen.number, INT error)

Selects a screen for drawing.

Input: screen.number = screen number for drawing. Default = 0.

0 <---screen.number <= 1

Output: error = error code.
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PROC DisplayScreen.XL (VAL INT link, screen.number,

INT error)

Selects a screen to be displayed.

Input: screen.number = screen number for display. Default =0.

0 <= screen.number <= 1

Output: error = error code.

PROC

PROC

FlipScreen.XL (VAL INT link, new screen, INT error)

Deselects displayed screen and activates designated screen for drawing.

Deselects any displayed windows.

Input: new. screen = screen number to be selected.

0 <= new.screen <= 1

Output: error = error code.

CopyScreen.XL (VAL INT link, from.screen, to.screen,

INT error)

Copies the contents of one screen onto another.

Input: from. screen = the screen to be copied from.

0 <= from.screen <= 1

to. screen = the screen to be copied to.

0 <= to.screen <= 1

= errorcode.Output: error

PROC CopyScrnSegToScrn.XL

Copies a screen segment

Input: from.screen

to.screen

from. x,

width,

(VAL INT link, from.screen,

to. screen, from. x, from. y,

width, length, to.x, to.y, mask,

INT error )

onto another screen.

= the screen to be copied from.

0 <= from.screen <= 1

= the screen to be copied to.

0 <= to.screen <= 1

from. y = coordinates of the upper left corner of the

segment to be copied.

length = width and length of the segment to be copied.
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PROC

to.x, to.y

mask =

Output: error

= coordinates of the beginning point on the

screen to which the segment is to be copied.

copy mask mode.

0 = normal copy

1 = only copy non-zero bytes

2 = only copy zero bytes

error code.

CopyWindSegToWind. XL

to. window, from.x, from.y, width,

to.x, to.y, mask, INT error)

Copies a window segment onto another window.

Input: from.window = the window to be copied from.

0 <= from.window <= 14

Output: error

(VAL INT link, from.window,

length,

to. window = the window to be copied to.

0 <= to.window <= 14

from.x, from.y = the coordinates of the upper left corner of the

segment to be copied.

width, length = width and length of the segment to be copied.

to.x, to.y = cooordinates of the beginning point on the

window to which the segment is to be copied.

mask - copy mask mode.

0 = normal copy

1 = only copy non-zero bytes

2 = only copy zero bytes

-- error code.

PROC CopyScrnSegToWind.XL (VAL INT link, from.screen,

to.window, from.x, from, y, width, length,

to.x, to.y, mask, INT error)

Copies a screen segment onto a window

Input: from. screen = the screen to be copied from.

0 <= from.screen <= 1

to. window = the window to be copied to.

0 <= to.window <= 14

from. x, from. y = coordinates of the upper left corner of the
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PROC

width.length

to.x, to.y

mask =

Output: error

segment to be copied.

= width and length of the segment to be

copied.

= coordinates of the beginning

point on the window to which the segment is

to be copied.

define desired copy mask mode.

0 = normal copy

1 = only copy non=zero bytes

2 = only copy zero bytes

error code.

SetWindow. XL (VAL INT link, wondiw.number,

INT error)

Sets up a window with given width and length.

Input: window.number = window number.

Xry =

Output: error =

x, y,

0 <= window.number <= 14

width and length of the desired window.

error code.

PROC ClearSelectedWindow.XL (VAL INT link, color, INT error)

Clears the currently selected window using a specified color.

Input: color = window color.

0 <= color <= 255

Output: error = error code.

PROC ClearWindow.XL (VAL INT link, window.number, color,

INT error)

Clears a set window to a specified color

Input: window, number = id number of window to be cleared.

0 <= window.number <= 14

color = window color.

0 <= color <= 255

= error code.Output: error
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PROC

PROC

PROC

PROC

SelectWindow. XL (VAL INT link, window.number,

Selects a set window for drawing.

Input: window.number = window number for drawing.

0 <= window.number <= 14

Output: error = error code.

INT error)

DisplayWindow. XL

INT

Input: window, number

X, y

Output: error

(VAL INT link, window.number,

error)

= window number for display

0 <= window.number <= 14

- display position of the window.

= error code.

x, y,

ClearSegment.XL (VAL INT link, xl, yl, x2, y2, color,

INT error)

Clears a segment on a currently active screen/window.

Input: xl, yl = the coordinates of the top left corner of the segment

that is to be cleared.

x2, y2 = the coordinated of the bottom right corner of the

segment that is to be cleared.

color = define desired segment color.

0 <= color <= 255

Output: error = error code.

ClearScreenSeg.XL (VAL INT link, screen.number, xl,

x2, y2, color, INT error)

Clears a segment segment.

Input: screen, number = screen which contains the segment.

xl, yl = coordinates of top left corner of segment.

x2, y2 = coordinates of bottom right corner of

segment

segment color.

0 <= color <= 255

error code.

color =

Output: error

yl,
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PROC

PROC

PROC

TEXT

PROC

PROC

ClearWindowSeg.XL (VAL INT link, window.number, xl, yl,

x2, y2, color, INT error)

Clears a window segment.

Input: window, number =

xl, yl

x2, y2

color

Output: error

window which contains the segment to be

cleared.

= coordinates of top left corner of segment

to be cleared.

= coordinates of bottom right corner of

segment to be cleared.

= segment color.

0 <= color <= 255

= error code.

GetCurrentScrnNum. XL (VAL INT link, INT screen.number)

Returns the current screen number.

Output: screen.number = current screen number

GetDisplayedScrnNum. XL (VAL INT link, INT screen.number)

Returns the current displayed screen number.

Output: screen.number = current displayed screen number.

ROUTINES

DrawChar.XL (VAL INT link, char.number, INT

Draws a character provided by the character number.

Input: char.number = character number

0 <= char.number <= 255

error)

WriteStr.XL (VAL INT link, str.size, VAL []

INT error)

Writes a string of text horizontally without justification.

Input: str.size = string size. IF "0" is input,

calculate the size.

text: = character string to be drawn.

Output: error = error code.

BYTE text,

the program will
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PROC

PROC

WritesStrJustify.XL (VAL INT link, str.size,

VAL [] BYTE text, INT error)

Writes a string of text according to the justification.

Input: str.size = string size. IF ")" is input, the program will

calculate the size.

text = character string to be drawn.

Output: error = error code.

WriteNum. XL (VAL INT link, number, INT error)

Writes a given integer number on screen.

Input: number = integer number to be drawn on screen.

Output: error = error code.

PROC WriteRealNum. XL (VAL INT link, VAL REAL32 realnumber,

VAL INT Ip, Dp, INT error)

Writes a given real number on screen.

Input: realnumber =

Ip =

Dp =

Output: error

real number to be drawn on screen.

number of digits to the left of the decimal point.

number of digits to the right of the decimal

point.

error code.

PROC

PROC

Scroll.XL (VAL INT link, INT error)

Scroll currently selected window/screen by one line

Output: error = error code.

JumpScroll.XL (VAL INT link, INT error)

Scroll currently selected window/screen. The number

determined by the y height multiplied by the character height.

Output: error = error code.

of lines is

PROC CarriageReturn.XL (VAL INT link, INT error)

Returns the cursor to the left edge of the currently

screen/window.

Output: error = error code.

selected
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PROC

PROC

PROC

LineFeed. XL (VAL INT link, INT error)

Returns the cursor to the left edge of

screen/window.

Output: error = error code.

the currently selected

LineFeed. XL (VAL INT link, INT error)

Increases the cursor position by the height of the characters being drawn.

Scrolling is automatic if issued at the bottom of the screen/window.

Output: error = error code.

SetTextStyle.XL (VAL INT link, font,

width, height)

Sets desiredteststyle.

Input: font =

text.dirct =

width =

height =

text,dirct,

font id. Default= 0.

Currently, only the default is available.

text orientation. Default = 0.

1 = vertical

character width. Default = 1.

character height. Default =1.

PROC SetTextJustify.XL (VAL INT link, horiz, vert)

Sets desired text justify.

Input: horiz = horizontal text justification. Default = 0 (left justify).

1 = center justify

2 = right justify

vert = vertical text justification. Default = 0 (top justify).

1 = center justify

2 = bottom justify

PROC MoveTextTo.XL (VAL INT link, x, y, INT error)

Moves the text cursor position to specific position.

Input: x, y = the coordinates of the desired text cursor position.

Output: error = error code.
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PROC MoveTextRel.XL (VAL INT link, delta.x, delta.y,

INT error)

Moves the text cursor position relative to its current position.

Input: delta, x, delta, y = the distance from text current position.

Output: error = error code.

PROC Rotate oXL (VAL INT link, turn, INT error)

Rotates all subsequent characters through 0, 1, 2, or 3 quarter turns in a

clockwise direction.

Input: turn = number of the turn.

Output: error = error code.

PROC ReflectX.XL (VAL INT link, INT error)

Reflects the textual output in the x plane. Can be cancelled by issuing a

second reflect command.

Output: error = error code.

PROC ReflectY.XL (VAL INT link, INT error)

Reflects the textual output in the y plane can be cancelled by issuing a

second reflect command.

Output: error = error code.

PROC GetTextSize.XL (VAL INT link, INT x.size, y.size)

Returns the text size. X.size is text width, y.size is text height.

Output: x.size = current text width.

y.size = current text height.

PROC GetTextCursor.XL (VAL INT link, INT x.axis,

Returns the text cursor position.

Output: x.axis, y.axis = current text cursor position.

CRT ROUTINES

y.axis)

PROC Xwidth. XL (VAL INT link, width)

Sets the pixel width.

Input: width = define desired pixel width. Default = 1.
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PROC

PROC

Yheight.XL (VAL INT link, height)

Sets the pixel height.

Input: height = define desired pixel height. Default = 1.

SetLineFrequency.XL (VAL INT link, line.frequency)

Sets the scan line frequency for CRT.

Input: line. frequency = desired line frequency.

PROC SetFrameRate.XL (VAL INT link, frame.rate)

Sets the frame for CRT.

Input: frame, rate = desired frame rate.

PROC

PROC

Interlace.XL (VAL INT link)

Toggles interlace ON/OFF.

SetPixelClock.XL (VAL INT link, pixel.clock)

Sets pixel clock frequency.

Input: pixel, clock = desired pixel clock.

PROC Int.crt.XL (VAL INT link)

Resets on receipt CRT controller.

PROC BlankCrt.XL (VAL INT link)

Blanks the monitor.

PROC UnblankCrt.XL (VAL INT link)

Unblanks the monitor.
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Error Codes

0

-1

-2

-3

-4

-5

-6

-7

-8

-9

-10

-11

-12

-13

-14

-15

-16

Below is a list of possible errors returned by XPGRAPHICS routines. If

the requested action was completed successfully, an error status of 0 is

returned; otherwise, one of the listed errors is specified.

successful completion

coordinates out of screen/window range

screen other than 0 or 1 selected

window selected has not been set

insufficient storage left for window definition

the maximum number of windows has been exceeded

drawing mode selected not in the range

rotations allowed only in quarter turns, i.e. (0-3)

color selection out of range of color look up table (0-255)

character requested was not in the range of character font table (0-

255)

only 255 characters allowed in strings

color table requested does not exist (0-2)

command set to graphics package does not exist

invalid window dimensions

invalid window position

invalid screen/window dimensions

window has not been selected
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APPENDIX G

KEYWORDS RECOGNIZED BY THE NASTRAN INTERFACE

MODULE

The following list contains the NASTRAN keywords recognized by the

NASTRAN interface module in XPFEM. Currently the interface module

recognizes only keywords associated with the displacement solution method in

MSC and COSMIC NASTRAN.

MSC KEYWORDS COSMIC KEYWORDS

CHEXA CIHEXl

CQUAD8 CIHEX2

CQUAD4 CQDEM1

CQDMEM1 CTRIM6

CTRIA6 CTRMEM

CTRIA3

GENERAL KEYWORDS

$ PARAM

CORD 1R PBAR

CORD2R PIHEX

ENDDATA PQDMEM1

FORCE PSHELL

GRID PSOLID

GRDSET SPC

MAT1 SPC 1
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APPENDIX H

PARALLEL MESH GENERATION with FINITE QUADTREE

The FINITE QUADTREE mesh generator uses tree data structures which

are not readily adaptable for parallel calculations due to the extensive amount

of interprocessor communication needed to maintain trees which are evenly

balanced across processors. To adapt FINITE QUADTREE for parallel mesh

generation, groups of independent elements, i.e., elements not associated

through common degrees of freedom, must be identified. Such groups of

independent elements can be identified using a coloring scheme. A coloring

scheme selectively assigns a color set to a group of dependent elements. The

color set is repeated for each group of dependent elements; thus, all elements

of a specific color are independent of each other and available for parallel

processing.

Two requirements of a coloring scheme are computational efficiency and

minimization of the color set. Computational efficiency is a requirement

because coloring schemes require large amounts of data and are not easily

parallelized; therefore, one or a small number of processors will be employed

for the coloring. Minimizing the size of the color set is a requirement to maintain

coarse granularity and hence reduce the frequency of synchronization and

communication.

Algorithms to color arbitrary finite element meshes with a minimum

number of colors are data- and CPU-intensive. Simple and efficient coloring

algorithms, however, can be developed when elements have a regular pattern.

In FINITE QUADTREE, the quadrants used to generate the finite elements have

such a regular pattern and thus will be the entities to be colored for parallel

mesh generation.

The simplest coloring procedure would color quadrants as sets of

independent quadrants based on the level of the terminal quadrants in the tree.

This form of coloring is quite efficient since it can be accomplished by
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performing one complete tree traversal in which each terminal quadrant is

assigned the appropriate color based on level in tree and location of quadrants

with respect to its parents. Each level requiring a separate set of colors uses

four new colors.

In the current implementation of FINITE QUADTREE, neighboring

quadrants that share an edge are allowed a one level difference. This

restriction allows quadrants that share a corner to have a two level difference.

Therefore, it is possible for three different levels to be dependent on each other

since they share common degrees of freedom. Thus a total of twelve colors are

required to identify independent quadrants (Figure H.1).

Clearly twelve colors is more than the minimum needed to ensure all

quadrants neighboring a given quadrant have a different color. For example, it

is possible to manually color the set of quadrants in Figure H.1 with six colors

such that neighboring quadrants have different colors. If the one level

difference were enforced across the nodes as well as the edges, the mesh

could be colored with the above procedure using only eight colors. If the two

level difference at corners were allowed in Figure H.1, dependent quadrants at

such corners would color the same, which is not correct. However, at such a

corner, if the quadrant at the lower tree level were given the color that would

have been assigned to its parent quadrant, the coloring problem across the

corner would be eliminated. Figure H.2 displays this concept applied to the set

of quadrants in Figure H.1. As seen in Figure H.2, the resulting set of eight

colors provides an acceptable set of colors.

The application of the procedure outlined above is more complex than

assigning colors based solely on level during a tree traversal. It specifically

requires the identification of quadrant corners where a two level difference

exists. However, this identification process can be done with reasonable

efficiency during an overall tree traversal process. Currently, stored information

for each quadrant indicates if neighboring quadrants are one level smaller. A

two level corner difference could be detected by determining quadrants with

neighbors of two different tree levels. When these cases are detected, a

localized tree traversal can be applied to find the level of the lower corner

quadrant.
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Further effort is required to ensure the functionality of the eight color

scheme. Additionally, it will be necessary to develop procedures to undo color

assignments during an adaptive refinement process which eliminates a two

level difference at a corner.
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FIGURE H.1

Use of twelve colors to

identify independent quadrants
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FIGURE H.2

Use of eight colors to
identify independent quadrants
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